3 research outputs found

    The genetics and conservation of Araucaria angustifolia: I. Genetic structure and diversity of natural populations by means of non-adaptive variation in the state of Santa Catarina, Brazil

    No full text
    The objective of this study was to generate information relative to the allele distribution and dynamics within and among populations of Araucaria angustifolia, a naturally-occurring conifer in the south of Brazil, being known popularly as "pinheiro-do-Paraná", "araucaria" or pine tree. In order to elucidate the levels and the distribution of the genetic variability, the population's genetic structure and the genetic distance among natural populations of this species with different levels of disturbance in different geographical areas were studied in detail. For this, samples of leaf tissue were collected from 328 adult individuals in nine natural populations in Santa Catarina State. To analyze the samples, the allozyme technique was applied in starch gel electrophoresis (penetrose 13%), with citrate/morfholine buffer. Nine enzymatic systems (PGM, PGI MDH, PRX, SKDH, 6PGDH, ACP, IDH and G6PDH) revealed 15 loci. The analysis provided values for He and Ho of 0.084 and 0.072, respectively. The general average of polymorphic loci was 73% in the species and 26.6% in the studied populations and the allele number per locus was 1.6. Wright's F-statistical estimates indicated the existence of inbreeding in populations (F IS= 0.148) and a low divergence among populations (F ST = 0.044). However, the inbreeding values were variable in different populations. Taken together, the results indicated that the greater part of the genetic variability is contained within populations. The working hypothesis that originally there was greater genetic diversity can be supported by these results which indicate that in the degraded populations the diversity indexes are lower in the degraded populations than those found in better-conserved populations. Thus the fragmentation of the forest followed by "araucaria" exploitation could have contributed to the genetic differentiation expressed through the allele frequency of the studied population

    Brazilian tropical dry forest (Caatinga) in the spotlight: an overview of species of Aspergillus, Penicillium and Talaromyces (Eurotiales) and the description of P. vascosobrinhous sp. nov.

    No full text

    Notes for genera – Ascomycota

    No full text
    Knowledge of the relationships and thus the classification of fungi, has developed rapidly with increasingly widespread use of molecular techniques, over the past 10--15 years, and continues to accelerate. Several genera have been found to be polyphyletic, and their generic concepts have subsequently been emended. New names have thus been introduced for species which are phylogenetically distinct from the type species of particular genera. The ending of the separate naming of morphs of the same species in 2011, has also caused changes in fungal generic names. In order to facilitate access to all important changes, it was desirable to compile these in a single document. The present article provides a list of generic names of Ascomycota (approximately 6500 accepted names published to the end of 2016), including those which are lichen-forming. Notes and summaries of the changes since the last edition of `Ainsworth Bisby's Dictionary of the Fungi' in 2008 are provided. The notes include the number of accepted species, classification, type species (with location of the type material), culture availability, life-styles, distribution, and selected publications that have appeared since 2008. This work is intended to provide the foundation for updating the ascomycete component of the ``Without prejudice list of generic names of Fungi'' published in 2013, which will be developed into a list of protected generic names. This will be subjected to the XIXth International Botanical Congress in Shenzhen in July 2017 agreeing to a modification in the rules relating to protected lists, and scrutiny by procedures determined by the Nomenclature Committee for Fungi (NCF). The previously invalidly published generic names Barriopsis, Collophora (as Collophorina), Cryomyces, Dematiopleospora, Heterospora (as Heterosporicola), Lithophila, Palmomyces (as Palmaria) and Saxomyces are validated, as are two previously invalid family names, Bartaliniaceae and Wiesneriomycetaceae. Four species of Lalaria, which were invalidly published are transferred to Taphrina and validated as new combinations. Catenomycopsis Tibell Constant. is reduced under Chaenothecopsis Vain., while Dichomera Cooke is reduced under Botryosphaeria Ces. De Not. (Art. 59)
    corecore