3 research outputs found

    PSMA-Specific CAR-Engineered T Cells Eradicate Disseminated Prostate Cancer in Preclinical Models.

    Get PDF
    Immunology-based interventions have been proposed as a promising curative chance to effectively attack postoperative minimal residual disease and distant metastatic localizations of prostate tumors. We developed a chimeric antigen receptor (CAR) construct targeting the human prostate-specific membrane antigen (hPSMA), based on a novel and high affinity specific mAb. As a transfer method, we employed last-generation lentiviral vectors (LV) carrying a synthetic bidirectional promoter capable of robust and coordinated expression of the CAR molecule, and a bioluminescent reporter gene to allow the tracking of transgenic T cells after in vivo adoptive transfer. Overall, we demonstrated that CAR-expressing LV efficiently transduced short-term activated PBMC, which in turn were readily stimulated to produce cytokines and to exert a relevant cytotoxic activity by engagement with PSMA+ prostate tumor cells. Upon in vivo transfer in tumor-bearing mice, CAR-transduced T cells were capable to completely eradicate a disseminated neoplasia in the majority of treated animals, thus supporting the translation of such approach in the clinical setting

    A BARF1-specific mAb as a new immunotherapeutic tool for the management of EBV-related tumors.

    Get PDF
    The use of monoclonal antibodies (mAb) for the diagnosis and treatment of malignancies is acquiring an increasing clinical importance, thanks to their specificity, efficacy and relative easiness of use. However, in the context of Epstein-Barr virus (EBV)-related malignancies, only cancers of B-cell origin can benefit from therapeutic mAb targeting specific B-cell lineage antigens. To overcome this limitation, we generated a new mAb specific for BARF1, an EBV-encoded protein with transforming and immune-modulating properties. BARF1 is expressed as a latent protein in nasopharyngeal (NPC) and gastric carcinoma (GC), and also in neoplastic B cells mainly upon lytic cycle induction, thus representing a potential target for all EBV-related malignancies. Considering that BARF1 is largely but not exclusively secreted, the BARF1 mAb was selected on the basis of its ability to bind a domain of the protein retained at the cell surface of tumor cells. In vitro, the newly generated mAb recognized the target molecule in its native conformation, and was highly effective in mediating both ADCC and CDC against BARF1-positive tumor cells. In vivo, biodistribution analysis in mice engrafted with BARF1-positive and -negative tumor cells confirmed its high specificity for the target. More importantly, the mAb disclosed a relevant antitumor potential in preclinical models of NPC and lymphoma, as evaluated in terms of both reduction of tumor masses and long-term survival. Taken together, these data not only confirm BARF1 as a promising target for immunotherapeutic interventions, but also pave the way for a successful translation of this new mAb to the clinical use
    corecore