122 research outputs found

    Cardiovascular risk in patients without known cardiovascular disease

    Get PDF
    Understanding the risks of atherosclerotic cardiovascular disease (CVD) allows for better patient education and management. Multiple risk models have been validated in large patient populations and provide insights into the risks associated with CVD. When assessing such risks, we suggest using a model that predicts myocardial infarction, cardiovascular death, and/or cerebrovascular events. In this review, we analyze several risk models and stratify the risks associated with CVD. We suggest that appropriate profiling of patients at-risk of CVD will lead to better physician recognition and treatment of modifiable risk factors, appropriate application of ATP III treatment for hyperlipidemia, and achieving optimal blood pressure control.Understanding the risks of atherosclerotic cardiovascular disease (CVD) allows for better patient education and management. Multiple risk models have been validated in large patient populations and provide insights into the risks associated with CVD. When assessing such risks, we suggest using a model that predicts myocardial infarction, cardiovascular death, and/or cerebrovascular events. In this review, we analyze several risk models and stratify the risks associated with CVD. We suggest that appropriate profiling of patients at-risk of CVD will lead to better physician recognition and treatment of modifiable risk factors, appropriate application of ATP III treatment for hyperlipidemia, and achieving optimal blood pressure control

    The anatomy of the fruit in relation to the propensity of citrus species to split

    Get PDF
    The anatomy of the fruit has been compared in three prone-to-split mandarin hybrids (Nova, Ellendale and Murcott), several cultivars of clementine mandarin (Fino, Clementina de Nules and Orogrande), and in Owari satsuma mandarin. The fruit of the hybrids is oblate to subglobose and usually presents an open stylar end disrupted by a navel formed by the floral meristem, which is conserved near the apex of the fruit. In the non-prone-to-split clementines as well as in Owari satsuma, the floral axis protrudes inside the style, and the flower meristem is lost through abscission shortly after petal fall. The abaxial side of the carpels fuses with the flower axis forming at the stylar end of the fruit a solid tissue which externally has a small scar at the place of style abscission. Most of the fruits in these cultivars have no navel. In addition, the fruit of clementine is slightly oblate or globose. The relevance of these anatomical characteristics as regards to splitting is supported by the differences between the split and non-split fruits in Nova, the split fruit being more oblate in shape and having a bigger navel than non-split fruit. However, the effect of applied growth regulators on fruit splitting could not be correlated with their effect on the anatomy of the fruit. Additional factors not contemplated in the study also influence fruit splitting

    Relation of carbohydrate reserves with the forthcoming crop, flower formation and photosynthetic rate, in the alternate bearing Salustiana sweet orange (Citrus sinensis L.)

    Full text link
    [EN] The aim of this work was to assess the relation between carbohydrate levels and flower and fruit production, as well as the role of carbohydrates on CO(2) fixation activity, by analysis of leaves, twigs and roots from the alternate bearing 'Salustiana' cultivar of sweet orange (Citrus sinensis [L.] Osbeck). A heavy crop load (on year) did not affect photosynthesis activity when compared to non-fruiting trees (off year). Fruiting trees accumulated most of the fixed carbon in mature fruits, whilst no accumulation was observed in roots before harvest. Non-fruiting trees transported part of the fixed carbon to the roots and mobilize it for growth processes and, at the end of the season (December), store it as reserves. Reserve carbohydrates accumulation in leaves started by early December for both tree types, showing the same levels in on and off trees until spring bud sprouting. A heavy flowering after an off year caused the rapid mobilization of the stored reserves, which were exhausted at full bloom. We found no evidence on carbon fixation regulation by either fruit demand or carbohydrate levels in leaves. Carbohydrate reserves played little or no role over fruit set, which actually relied on current photosynthesisWe thank Ing. Agr. J.M. Torres (ANECOOP, Valencia, Spain) for providing the orchard facilities and logistic help, the R + D + i Linguistic Assistance Office at the Universidad Politecnica de Valencia for their help in revising this article and Y. Bordon for her cooperation in some experiments. Thanks are due also to Dr. Olivares for the critical review of the manuscript. This research was funded by grants from the Conselleria de Agricultura, Pesca y Alimentacion (GV-CAPA00-11) and the Conselleria diEmpresa, Universitat i Ciencia, Generalitat Valenciana (Grupos 04/059).Monerri Huguet, MC.; Fortunato De Almeida, A.; Molina Romero, RV.; González Nebauer, S.; García Luís, MD.; Guardiola Barcena, JL. (2011). Relation of carbohydrate reserves with the forthcoming crop, flower formation and photosynthetic rate, in the alternate bearing Salustiana sweet orange (Citrus sinensis L.). Scientia Horticulturae. 129(1):71-78. https://doi.org/10.1016/j.scienta.2011.03.009S7178129
    corecore