197 research outputs found

    CATCHprofiles: Clustering and Alignment Tool for ChIP Profiles

    Get PDF
    Chromatin Immuno Precipitation (ChIP) profiling detects in vivo protein-DNA binding, and has revealed a large combinatorial complexity in the binding of chromatin associated proteins and their post-translational modifications. To fully explore the spatial and combinatorial patterns in ChIP-profiling data and detect potentially meaningful patterns, the areas of enrichment must be aligned and clustered, which is an algorithmically and computationally challenging task. We have developed CATCHprofiles, a novel tool for exhaustive pattern detection in ChIP profiling data. CATCHprofiles is built upon a computationally efficient implementation for the exhaustive alignment and hierarchical clustering of ChIP profiling data. The tool features a graphical interface for examination and browsing of the clustering results. CATCHprofiles requires no prior knowledge about functional sites, detects known binding patterns “ab initio”, and enables the detection of new patterns from ChIP data at a high resolution, exemplified by the detection of asymmetric histone and histone modification patterns around H2A.Z-enriched sites. CATCHprofiles' capability for exhaustive analysis combined with its ease-of-use makes it an invaluable tool for explorative research based on ChIP profiling data

    Structural dynamics and catalytic properties of a multimodular xanthanase

    Get PDF
    The precise catalytic strategies used for the breakdown of the complex bacterial polysaccharide xanthan, an increasingly frequent component of processed human foodstuffs, have remained a mystery. Here, we present characterization of an endo-xanthanase from Paenibacillus nanensis. We show that it is a CAZy family 9 glycoside hydrolase (GH9) responsible for the hydrolysis of the xanthan backbone capable of generating tetrameric xanthan oligosaccharides from polysaccharide lyase family 8 (PL8) xanthan lyase-treated xanthan. Three-dimensional structure determination reveals a complex multimodular enzyme in which a catalytic (ι/ι) 6 barrel is flanked by an N-terminal "immunoglobulin-like" (Ig-like) domain (frequently found in GH9 enzymes) and by four additional C-terminal all β-sheet domains that have very few homologues in sequence databases and at least one of which functions as a new xanthan-binding domain, now termed CBM84. The solution-phase conformation and dynamics of the enzyme in the native calcium-bound state and in the absence of calcium were probed experimentally by hydrogen/deuterium exchange mass spectrometry. Measured conformational dynamics were used to guide the protein engineering of enzyme variants with increased stability in the absence of calcium; a property of interest for the potential use of the enzyme in cleaning detergents. The ability of hydrogen/deuterium exchange mass spectrometry to pinpoint dynamic regions of a protein under stress (e.g., removal of calcium ions) makes this technology a strong tool for improving protein catalyst properties by informed engineering

    Den kongelige Maleri- og Skulptursamling; samt 15 billedtekster

    No full text

    Caspar David Friedrich og Danmark

    No full text

    Eckersberg pĂĽ den europĂŚiske scene

    No full text
    En gennemgang og analyse af C.W. Eckersbergs kunst set i lyset af de samtidige strømninger i den samtidige europÌiske kuns
    • …
    corecore