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Differential Nongenetic Impact of Birth Weight
Versus Third-Trimester Growth Velocity on Glucose
Metabolism and Magnetic Resonance Imaging
Abdominal Obesity in Young Healthy Twins
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Gerrit Van Hall, Eva Fallentin, Torben Larsen, Rasmus Larsen, Pernille Poulsen,
and Allan Vaag

Steno Diabetes Center (K.P., L.G., A.V.), 2820 Gentofte, Denmark; Technical University of Denmark (T.H.M., R.L.),
DTU Informatics, 2800 Lyngby, Denmark; Novo Nordisk (P.P.), 2860 Bagsværd, Denmark; Holbæk Hospital (T.L.),
4300 Holbæk, Denmark; Department of Cellular and Molecular Medicine (H.E.), Copenhagen University, 2200
Copenhagen, Denmark; Hvidovre Hospital (E.F.), 2650 Hvidovre, Denmark; Rigshospitalet, Copenhagen Muscle
Research Center (G.V.H.) and Department of Endocrinology (A.V.), 2200 Copenhagen, Denmark

Context: Low birth weight is associated with type 2 diabetes, which to some extent may be me-
diated via abdominal adiposity and insulin resistance. Fetal growth velocity is high during the third
trimester, constituting a potential critical window for organ programming. Intra-pair differences
among monozygotic twins are instrumental in determining nongenetic associations between early
environment and adult metabolic phenotype.

Objective: Our objective was to investigate the relationship between size at birth and third-tri-
mester growth velocity on adult body composition and glucose metabolism using intra-pair dif-
ferences in young healthy twins.

Methods: Fifty-eight healthy twins (42 monozygotic/16 dizygotic) aged 18–24 yr participated.
Insulin sensitivity was assessed using hyperinsulinemic-euglycemic clamps. Whole-body fat was
assessed by dual-energy x-ray absorptiometry scan, whereas abdominal visceral and sc fat (L1–L4)
were assessed by magnetic resonance imaging. Third-trimester growth velocity was determined by
repeated ultrasound examinations.

Results: Size at birth was nongenetically inversely associated with adult visceral and sc fat accu-
mulation but unrelated to adult insulin action. In contrast, fetal growth velocity during third
trimester was not associated with adult visceral or sc fat accumulation. Interestingly, third-trimes-
ter growth was associated with insulin action in a paradoxical inverse manner.

Conclusions: Abdominal adiposity including accumulation of both sc and visceral fat may consti-
tute primary nongenetic factors associated with low birth weight and reduced fetal growth before
the third trimester. Reduced fetal growth during vs. before the third trimester may define distinct
adult trajectories of metabolic and anthropometric characteristics influencing risk of developing
type 2 diabetes. (J Clin Endocrinol Metab 96: 2835–2843, 2011)

There is a well-established association between low
birth weight (LBW) and risk of developing insulin

resistance and type 2 diabetes (T2D) (1) as well as cardio-
vascular disease (2, 3). LBW represents the composite end-

point of growth velocities and trajectories during gesta-
tion including first, second, and third trimesters. Fetal
growth velocity (FGV) is at its maximum in the third tri-
mester, constituting a potentially important critical win-
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dow for organ programming. Indeed, third-trimester ex-
posure to famine during the Dutch hunger winter of
1944–1945 was linked to decreased glucose tolerance in
adult life (4).

There is compelling evidence for detrimental effects of
abdominal obesity on all components in the metabolic
syndrome (5, 6). LBW was associated with central obesity
in some (7) but not all (8) studies. The inconsistency in the
literature may arise from many different factors including
age-dependent impact of birth weight on adult body com-
position, genetic admixture, and the nature and timing of
fetal insults as well as the use of indirect measures of ab-
dominal obesity in most studies.

Visceral and sc fat has not previously been assessed
directly using the multi-slice magnetic resonance (MR)
scanning technology in human study cohorts addressing
the developmental origin of obesity and T2D. Further-
more, only few studies in the area included detailed ultra-
sound measurements of growth velocities throughout
third trimester (9).

At least two of the currently more than 40 identified
T2D gene variants are associated with reduced birth
weight, providing proof of principle for a genetic link be-
tween LBW and T2D (10–12). Nevertheless, the vast ma-
jority of T2D genes are not associated with weight at birth,
and studies of genetically identically monozygotic twins
have revealed a significant nongenetic impact of size at
birth on T2D and associated metabolic changes in adult
life (13, 14). Indeed, intra-pair correlations among ge-
netically identical twins has been documented to rep-
resent a very sensitive and powerful tool to detect non-
genetic associations between markers of the fetal
environment including birth weight on one side and
metabolic and anthropometric outcome variables rele-
vant to T2D pathophysiology on the other.

We aimed to investigate the nongenetic relationship
between size at birth and third-trimester FGV, respec-
tively, and state of the art measures of adult body com-
position and glucose metabolism in a unique cohort of
young adult twins with extensive ultrasound determina-
tions of FGV during the third trimester.

Subjects and Methods

Subjects
Participants were offspring of a cohort of women with twin

pregnancies and admitted to Herlev Hospital, Denmark, in the
period 1983–1996 (n � 457). Gestational age was determined by
ultrasound at wk 18 of gestation. Additional ultrasound exam-
inations were performed with 2-wk intervals from wk 28 of
gestation until delivery. Fetal weight was calculated from stan-
dard biometric ultrasound examinations (15). Coefficients of
variation of ultrasound determinations have in singleton preg-

nancies been reported to be in the range of 6.5% and the differ-
ence between estimated fetal weight and actual birth weight to be
�2.2 � 8.7% (16). Weight estimates were transformed to SD

scores (SDS) using an age- and sex-specific reference of singleton
fetal growth (16). FGV in the third trimester was determined by
linear regression using a minimum of three examinations (range,
3–8) and was expressed as �SDS per 28 d. Birth weight SDS was
calculated using a large Swedish singleton growth reference (17).

A random sample of 58 young healthy twins (30 male and 28
female) participated, of which a subgroup of eight participants
did not participate in the clamp protocol. None received medi-
cation known to interfere with glucose homeostasis. Zygosity
was determined by comparison of 10 microsatellite DNA poly-
morphisms showing very high heterozygosity in the population
(18). The protocol was approved by the regional ethics commit-
tee, and procedures were performed according to the principles
of the Helsinki Declaration. After thorough written and oral
explanation of the study, all participants gave their written
consent.

Study design

Hyperinsulinemic-euglycemic clamp combined with
stable isotope infusion, iv glucose tolerance test
(IVGTT), and indirect calorimetry

The study procedure was performed as previously described
(19). Female participants who did not use oral contraceptives
were examined on d 2–5 of their menstrual period. Participants
were instructed to consume a diet rich in carbohydrate for 2 d and
to abstain from strenuous exercise activity for 24 h before the
examination. After an overnight fast, the participants underwent
standard blood testing, anthropometric measurements, blood
pressure, and a dual-energy x-ray absorptiometry (DXA) scan.
At 0730 h, a polyethylene catheter was placed in each antecubital
vein for blood sampling and test infusions. One hand was kept
in a heated plexiglas box to ensure arterialization of the venous
blood. Immediately after taking the background samples, a
primed constant infusion of [6,6-2H5]glucose (priming bolus of
20 �mol/kg; continuous infusion rate of 0.220 �mol/min � kg)
was started (time 0 min) and maintained for 150 min to deter-
mine glucose kinetics in the basal state. Blood samples for mea-
suring plasma glucose enrichments were drawn at baseline (time
0 min) and in the basal steady-state period (time 120–150 min)
when the tracer equilibria of [2H5]glucose was expected. Iso-
topes were purchased from Cambridge Isotope Laboratories
(Andover, MA). A 30-min IVGTT (time 150–180 min) was per-
formed for the assessment of �-cell function. A glucose bolus of
0.3 g/kg was infused over 1 min, and blood samples for glucose,
insulin, and C-peptide were collected at 0, 2, 4, 6, 8, 10, 15, 20,
and 30 min. After the IVGTT, a primed-continuous insulin in-
fusion was initiated and fixed at 80 mU/m2 � min through the
180-min clamp (time 180–360 min). The insulin-stimulated
steady-state period was defined as the last 30 min of the insulin
clamp period. A variable infusion of unlabeled glucose (180 g/li-
ter) was used to maintain euglycemia at 5 mM. Plasma glucose
concentration was monitored every 5 min during clamp using a
OneTouch (LifeScan, Milpitas, CA) blood glucose meter. Oxy-
gen consumption (VO2) and carbon dioxide production (VCO2)
were measured during steady-state using indirect calorimetry
with a flow-through canopy gas analyzer system (Deltatrac; Da-
tex, Helsinki, Finland) as previously described (20).
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Biochemical and tracer analyses
Blood samples were centrifuged immediately at 4 C, and

plasma samples were stored at �80 C. Plasma insulin and C-
peptide concentrations were determined by AutoDELPHIA
time-resolved fluoroimmunoassay (PerkinElmer Wallac Oy,
Turku, Finland). Stable isotope enrichments were measured as
previously described (21).

Magnetic resonance
T1 weighted MR images were acquired with a 3-T Philips

Achieva whole-body scanner. For each patient, between 15 and
26 slices were used to cover the abdominal region bounded by L1
and L4 (pixel spacing 0.8984 � 0.8984 mm2, slice thickness 7
mm, gap 1 mm). The images were automatically processed to
quantify the abdominal adiposity using image analysis tech-
niques (22, 23). The applied method distinguished between su-
perficial sc, deep sc, and visceral fat, reporting the quantities as
percentages of total abdominal volume.

Calculations

IVGTT
The area under the curve was calculated using a trapezoidal

method for insulin during the first-phase insulin response (FPIR),
0–10 min of the IVGTT.

Hyperinsulinemic-euglycemic clamp
For stable isotope tracer calculations, the total rate of glucose

appearance was calculated as Ra (endogenous) � Rd � Ftotal/
Eglucose, where Ra and Rd are the respective rates of appearance
and disappearance (micromoles per kilogram fat-free mass per
minute), and Ftotal is the total infusion rate of glucose tracer
(micromoles per kilogram fat-free mass per minute). Eglucose is
the enrichment of glucose in plasma expressed as tracer-to-tracee
ratio. The Ra of glucose is a measure of endogenous glucose
production and represents hepatic glucose production in the
basal state (24). To measure insulin action, M-value was calcu-
lated as the mean glucose infusion rate during the insulin-stim-
ulated steady-state period (milligrams per kilogram fat-free mass
per minute). During the predefined clamp steady-state periods,
the coefficients of variation of plasma insulin and glucose levels
were 0.11 and 0.06, respectively. Basal and insulin-stimulated
glucose and lipid oxidation rates were calculated according to
the methods of Frayn (25). The �-cell function was assessed by
calculating the disposition index (Di) expressing the inverse hy-
perbolic relationship between insulin secretion and insulin ac-
tion and calculated as FPIR � M-value.

Statistics
The comparison of males and females (see Tables 2 and 3)

were performed using mixed ANOVA (PROC MIXED proce-
dure; SAS Institute, Cary, NC). monozygotic twins share their
entire genome, whereas dizygotic twins on average share half of
their segregating genes. Therefore, observations in neither mo-
nozygotic nor dizygotic twin pairs can be regarded as indepen-
dent observations. Accordingly, we adjusted for the intra-twin
pair relationship in the analyses by including a random-effect
term for twin pair membership and fixed-effect terms for
zygosity.

Percent-wise impact of birth weight, birth weight SDS and
third-trimester FGV (per 1 SD) on adult measures of metabolism

and body composition were studied in a similar PROC MIXED
procedure adjusted for gender. The analyses on MR-derived
measures of abdominal obesity were adjusted for current BMI
(see Table 4).

To quantify the nongenetic impact of birth weight, birth
weight SDS, and third-trimester FGV on adult body composition
and glucose homeostasis, multivariate linear regression analyses
were made using intra-pair differences (twin A � twin B) exclu-
sively in the 42 monozygotic twins. This approach adjusts for
common environmental factors (such as the maternal, placental,
and common postnatal environmental effects) and most impor-
tantly genetic effects. Consequently, any observed association
using this approach is of environmental origin. The multivariate
linear regression analyses were made with intra-pair differences
of adult anthropometry and body composition as response vari-
able and intra-pair differences of birth weight, birth weight SDS,
and third-trimester FGV as explanatory variable. All analyses
were adjusted for sex.

The designation of a member in a twin pair is arbitrary; i.e.
there is no consistency in which of the twins in a pair is assigned
A and which is assigned B. The correlation coefficient may differ
dependent on the assignment of the twins, so intra-pair differ-
ences were calculated using 2n, as previously recommended (26).
All analyses were carried out in SAS (version 9.1; SAS Institute);
P � 0.05 was considered significant.

Results

Clinical characteristics
A total of 42 monozygotic (21 pairs; 26 males and 16 females)

and 16 dizygotic twins (eight pairs; four males and 12 females)
were included. Subject characteristics stratified by gender and
zygosity is provided in Table 1. The median gestational age was
263 d (range, 208–279 d).

Gender differences
Females had a higher total fat percentage and a 2-fold increase

of the deep and superficial sc fat contents compared with males
(Table 2). However, females and males had similar volume per-
centage of visceral fat (Table 2). Females had lower fasting
plasma glucose but a higher level of free fatty acids compared
with males (Table 3). During the hyperinsulinemic-euglycemic
clamps, females had a higher rate of glucose appearance from the
liver and a higher glucose oxidation rate compared with males
(Table 3).

Impact of birth weight, birth weight SDS, and FGV
on body composition (Table 4)

The quantitative impact of 1 SD increase in birth weight
SDS on visceral, deep sc, and superficial sc adipose tissue
was �12.5, �32.3, and �8.1%, respectively, when ac-
counting for current BMI. In comparison, birth weight per
se was inversely associated with visceral [�14.7% (95%
confidence interval � �26.3 to �1.4)] but not deep or
superficial sc adipose tissue. Third-trimester FGV was not
associated with visceral or sc adipose tissue accumulation.

In supplementary analysis, BMI was replaced as ex-
planatory variable by body fat percentage, whole-body fat
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content (kilograms), or lean body mass (kilograms) (data
not shown). However, substitution of BMI with DXA-
derived measures of body composition made only very
subtle changes to the results presented.

Impact of birth weight, birth weight SDS, and FGV
on insulin action and insulin secretion

Birth weight and birth weight SDS were not related to insulin
action or insulin secretion. In contrast, FGV was inversely asso-
ciated with M-value but not related to other measures of glucose
metabolism (Table 4).

Nongenetic impact of birth weight, birth weight
SDS, and FGV on body composition

Intra-pair differences in birth weight, birth weight SDS, and
FGV were correlated with intra-pair differences in adult body
composition and glucose metabolism (Table 5). The quantitative
nongenetic impact of 1 SD increase in birth weight within a twin
pair was 2.0 cm in adult height and 1370 g in adult lean body
mass (Table 5). Similar nongenetic relationships were seen for 1
SD increase in intra-twin pair birth weight SDS; however, birth
weight SDS was additionally associated with decreased visceral,
deep sc, and superficial sc fat accumulation of 1.9, 0.5, and 0.9
volume percent per 1 SD (Table 5). Third-trimester FGV was

associated with adult height but not with measures of abdominal
obesity.

Discussion

This study identifies novel and apparently independent
differential contributions from third-trimester FGV and
birth weight SDS, respectively, on abdominal obesity and
insulin action. Birth weight SDS was inversely associated
with both sc and visceral obesity in a nongenetic manner
but not related to insulin action and insulin secretion. In
contrast, third-trimester FGV was inversely associated
with insulin action but not significantly with visceral or sc
fat accumulation.

Previous studies have reported somewhat conflicting
positive, inverse, or no associations between birth weight
and different measures of adult obesity. Some of the di-
versity in the literature may arise from age-dependent as-
sociations (8), ethnic differences, and the nature and tim-
ing of growth restriction (27) as well as methodological
differences related to the definition of obesity. Epidemio-
logical studies have reported a positive association be-

TABLE 1. Subject characteristics

Males Females

MZ DZ MZ DZ
Pre- and perinatal growth and

condition
n 26 4 16 12
Gestational age (d) 257 (253–267) 268 (266–270) 265 (263–266) 248 (237–259)
Fetus

FGV �0.88 (�1.56 to �0.55) �0.76 (�1.01 to �0.42) �0.35 (�0.62–0.12) �0.46 (�1.31–0.41)
Birth

Birth weight (g) 2450 � 442 3389 � 331 2502 � 317 2185 � 390
Birth weight Z-score �1.30 � 1.24 0.24 � 0.88 �1.65 � 1.01 �0.97 � 1.24
Birth length (cm) 48.0 (46.5–48.5) 51.0 (49.0–52.5) 47.8 (45.5–49.0) 46.0 (44.0–47.5)
Birth length Z-score �0.50 � 0.99 �0.50 � 1.11 �0.61 � 1.35 �0.35 � 1.08
Ponderal index 22.8 � 2.1 26.0 � 2.2 23.5 � 2.2 22.8 � 2.1
Head circumference (cm) 32.8 � 1.9 34.4 � 0.95 32.9 � 1.3 32.0 � 1.3
APGAR 1 9 (8–10) 9 (7–10) 10 (10–10) 10 (9–10)
APGAR 5 10 (10–10) 10 (10–10) 10 (10–10) 10 (10–10)

Adulthood
Age (yr) 21.7 � 2.1 18.9 � 0.2 21.6 � 1.4 23.2 � 1.7
Height (m) 1.79 � 0.05 1.84 � 0.03 1.66 � 0.05 1.69 � 0.03
Weight (kg) 71.5 � 8.2 75.4 � 2.8 54.9 � 9.2 58.4 � 8.6
BMI (kg/m2) 22.4 � 2.3 22.4 � 1.3 20.0 � 2.8 20.6 � 3.0
Waist circumference (cm) 79.1 � 5.8 80.3 � 2.1 68.4 � 6.4 69.2 � 7.9
Hip circumference (cm) 94.0 � 6.1 96.5 � 1.7 91.7 � 6.8 95.4 � 7.1

Waist/hip ratio 0.84 � 0.05 0.83 � 0.02 0.75 � 0.04 0.72 � 0.04
Total cholesterol 3.8 � 0.6 3.2 � 0.5 3.8 � 0.6 4.3 � 0.72
HDL 1.11 � 0.25 1.32 � 0.23 1.72 � 0.42 1.58 � 0.26
LDL 2.26 � 0.57 1.48 � 0.62 1.71 � 0.38 2.28 � 0.68
Triglycerides 0.88 (0.65–1.06) 0.71 (0.59–0.95) 0.67 (0.51–0.94) 0.82 (0.71–1.24)
Systolic blood pressure 123 � 9 135 � 5 118 � 9 111 � 7
Diastolic blood pressure 63 � 8 73 � 7 69 � 6 64 � 7

Data are provided as mean � SD or when not normally distributed as median (interquartile range). DZ, Dizygotic; HDL, high-density lipoprotein;
LDL, low-density lipoprotein; MZ, monozygotic.
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tween birth weight and BMI in young (28), middle-aged
(29), and elderly individuals (30). However, a smaller
study, using DXA scans, reported that the positive asso-
ciation of birth weight with adult BMI was explained by
its association with lean body mass (31). A study in 32
elderly men from England reported higher fat mass and
higher trunk-to-limb fat ratio after adjusting for total
fat mass in men born with a low birth weight (32).
Similarly, we have previously observed an elevated
trunk-to-leg fat ratio among young healthy singletons
born with low birth weight (7). The present study used
state-of-art multi-slice MR imaging (MRI) and found
birth weight SDS to be associated with both visceral and
sc fat deposition but not with whole-body fat percent-
age, BMI, or waist circumference.

Visceral fat accumulation is considered to be detrimen-
tal for insulin action (33), which potentially can be ex-
plained by a greater release of free fatty acids from the
visceral than from the sc adipose tissue (34). Others have
suggested that the quantitatively higher abundance of sc
fat may represent the most critical adipose tissue compart-

ment adversely influencing insulin action (35, 36). A re-
cent study in obese Pima Indians assessed abdominal obe-
sity by MRI and found both ip and deep sc fat to predict
peripheral and hepatic insulin action (37). Likewise, both
visceral and sc adipose tissue were associated with blood
pressure, diabetes, and the metabolic syndrome in the Fra-
mingham Heart Study (38). Finally, a prospective study
among Japanese Americans found intraabdominal fat to
predict T2D independent of BMI and sc fat area (39). The
significant inverse intra-twin pair associations between
birth weight SDS on one side, and both visceral as well as
abdominal sc fatasdeterminedusingMRIontheother,dem-
onstrates that an adverse intrauterine environment predis-
poses to abdominal obesity by influencing both visceral and
scabdominal fataccumulationwithno impacton total-body
fat content in young adult life. Importantly, the significant
associations observed among the genetically identical mo-
nozygotic twins provide strong evidence in favor of a non-
genetic component contributing to the association between
low birth weight and abdominal fat accumulation.

In contrast to birth weight SDS scores, third-trimester
FGV was not associated with visceral or sc fat volume

TABLE 2. Adult anthropometrics determined by DXA
and MR scan

Males Females
DXA

Total fat (%) 14.2 (11.5–16.6) 26.2 (21.7–28.8)c

Total fat (kg) 10.71 (8.38–13.58) 14.95 (11.38–17.24)b

Total lean body
mass (kg)

62.1 (57.7–65.4) 41.9 (37.7–45.0)c

Trunk fat (kg) 3.94 (3.30–5.31) 5.21 (3.53–6.60)
Trunk fat (%) 11.5 (9.75–15.2) 19.4 (15.5–24.1)c

Leg fat (kg) 2.06 (1.51–2.56) 2.93 (2.64–3.80)c

Leg fat (%) 16.2 (12.7–18.4) 32.0 (27.7–35.2)c

Trunk to leg
ratio (kg)

2.02 (0.74–2.20) 1.39 (1.25–1.81)b

Trunk to leg
ratio (%)

0.76 (0.68–0.86) 0.60 (0.53–0.69)b

Trunk to total
fat ratio (kg)

0.38 (0.36–0.40) 0.34 (0.31–0.39)a

Leg to total fat
(kg)

0.38 (0.36–0.41) 0.47 (0.42–0.49)c

MR
Superficial sc

fat (vol%)
8.48 (7.06–10.79) 15.5 (12.0–20.1)c

Deep sc fat
(vol%)

1.08 (0.70–2.10) 2.86 (1.77–3.43)b

Visceral fat
(vol%)

5.62 (4.43–6.75) 4.95 (3.56–6.48)

Total sc (vol%) 10.3 (8.5–12.1) 18.7 (14.0–23.1)c

Abdominal fat
(vol%)

15.9 (13.2–19.5) 22.6 (17.6–28.8)b

Data from the MR scan are provided in volume percent (vol%) (95%
confidence interval).
a P � 0.05.
b P � 0.01.
c P � 0.001.

TABLE 3. Hyperinsulinemic-euglycemic clamp

Males Females
Plasma glucose

(mmol/liter)
Basal 5.28 � 0.21 4.82 � 0.36c

Serum insulin
(pmol/liter)

Basal 34.9 � 12.6 33.2 � 13.7
Free fatty acids

(� mol/liter)
Basal 269 (217–383) 420 (351–511)a

Insulin stimulated 6.0 (4.0–10.0) 9.0 (6.5–12.0)
Glucose oxidation

(mg/min � kg FFM)
Insulin stimulated 4.45 � 0.56 5.21 � 0.73b

Fat oxidation
(mg/min � kg FFM)

Insulin stimulated 0.10 � 0.22 �0.02 � 0.24
Non-Ox GM

(mg/min � kg FFM)
7.8 (6.9–9.6) 8.3 (7.2–9.3)

Ra glucose
(mg/min � kg FFM)

2.52 � 0.54 3.23 � 0.85b

M-value
(mg/min � kg FFM)

12.2 (11.5–13.8) 13.0 (11.8–15.0)

Di peripheral (10�3

pmol/liter � min �
mg/min � kg FFM)

19.5 (13.6–32.2) 24.4 (19.1–30.7)

Data are shown as mean � SD or median (interquartile range) when
data not normally distributed. FFM, Fat-free mass; Ra, rate of
appearance. Non-Ox, Non-oxidative glucose metabolism; GM, glucose
metabolism; Di, disposition index.
a P � 0.05.
b P � 0.01.
c P � 0.001.
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percent, indicating that central fat accumulation repre-
sents a consequence of fetal programming before the third
trimester. In accordance, a study in 805 human embryos
and fetuses suggested the critical window for adipose tis-
sue development to be the period from the 14th to 23rd
week of gestation (40). Additionally, maternal undernu-
trition during the first and second but not third trimester
was related to offspring obesity at age 19 in the Dutch
Hunger Winter Study (27). We have previously investi-
gated the impact of FGV vs. birth weight SDS on body
composition assessed by DXA in a cohort of singletons
recruited from the same Danish pregnancy clinic (9). In
our previous study, birth weight SDS among singletons
was inversely associated with DXA fat mass as well as
trunk fat percentage, the latter finding being consistent
with the current data. In further support of the current
twin data, we did not observe any significant association
between FGV and body composition among singletons
(9). Taken together, the current and previous data support
a key role of the intrauterine environment during the first
or second trimester in the origin of abdominal obesity. The

minor difference between this and our previous study with
regard to the associations between birth weight and total
fat mass may be explained by the use of intra-pair differ-
ences among twins vs. singletons as well as the use of DXA
vs. MRI in the two studies to assess regional and total fat
mass. In terms of methodologies, it may be emphasized
that intra-pair correlations among in particular monozy-
gotic twins as well as the use of MRI to assess regional fat
mass may represent more distinct, sensitive, and powerful
assessments of the association between fetal growth and
abdominal obesity as compared with the use of singletons
and DXA scans. Finally, comparison between twins and
singletons may be complicated by the different intrauter-
ine challenges and shorter gestation or the higher risk of
insulin resistance and T2D in twins per se (41).

We observed no associations between birth weight SDS
and insulin action in this cohort of young healthy twins. In
contrast, FGV during the third trimester was associated
with insulin action in a somewhat paradoxical inverse
manner with a high third-trimester FGV being associated
with reduced insulin action. In our previous study of

TABLE 4. Percent-wise impact of size and birth and FGV per 1 SD on measures of metabolism and body composition

Birth weight Birth weight SDS FGV
MR

Superficial sc fat (vol%)a �2.9 (�8.8–3.3) �8.1 (�12.7 to �3.3)c �3.6 (�8.9–2.0)
Deep sc fat (vol%)a �7.52 (�25.3–14.4) �32.3 (�43.2 to �21.7)d 7.0 (�14.8–34.4)
Visceral fat (vol%)a �14.7 (�26.3 to �1.4)b �12.5 (�23.4 to �0.0)b 3.3 (�10.6–19.4)
Total sc (vol%)a �4.2 (�10.5–2.6) �10.3 (�15.3 to �5.00)d �3.2 (�9.5–3.4)
Abdominal fat (vol%)a �7.3 (�13.8 to �0.2)b �12.0 (�17.1 to �6.5)d �2.5 (�9.3–4.8)

DXA
Total fat (%) �3.76 (�8.59–1.33) 0.07 (�4.55–4.90) �1.69 (�6.39–3.24)
Total fat (kg) �3.08 (�10.31–4.69) 2.77 (�4.06–10.1) �1.17 (�7.79–5.93)
Total lean body mass (kg) 1.66 (�0.47–3.91) 1.82 (�0.10–3.78) �0.98 (�2.68–0.76)
Trunk to leg ratio (kg) �1.47 (�6.79–4.15) �0.56 (�5.44–4.56) 3.65 (�1.55–9.13)
Trunk to total fat ratio (kg) �1.20 (�4.11–1.79) �0.00 (�2.67–2.73) 1.68 (�1.15–4.59)

Hyperinsulinemic-euglycemic clamp
Fasting plasma glucose (mmol/liter) 0.54 (1.21–1.02) �0.37 (1.97–1.25) 0.65 (�1.05–2.37)
Fasting serum insulin (pmol/liter) 7.38 (�3.80–19.9) 4.17 (�5.97–15.4) 1.15 (�8.97–12.4)
Free fatty acids (� mol/liter)

Fasting 1.71 (�9.35–14.1) 6.29 (�5.08–19.0) 11.54 (�1.84–26.7)
Insulin stimulated 2.23 (�19.6–18.9) �8.36 (�23.9–10.4) 6.90 (�11.6–29.2)

Glucose oxidation (mg/min � kg FFM)
Insulin stimulated 0.25 (�3.77–4.45) �1.79 (�5.52–2.08) �3.30 (�7.51–1.10)

Fat oxidation (mg/min � kg FFM)
Insulin stimulated 0.34 (�32.8–49.9) �4.86 (35.4–40.1) 4.79 (�26.8–50.0)

Non-Ox GM (mg/min � kg FFM) 2.38 (�5.18–10.54) �4.30 (�10.1–1.88) �6.66 (�13.2–0.46)
FPIR �0.84 (�16.1; 24.3) 6.48 (�8.76; 24.3) 7.97 (�7.43; 25.9)

Ra glucose (mg/min � kg FFM) 0.02 (�6.71–7.14) �3.59 (�9.48–2.68) �3.84 (�9.69–2.39)
M-value (mg/min � kg FFM) 1.92 (�3.85–8.03) �3.24 (�8.28–2.09) �5.41 (�9.99 to �0.66)b

Di peripheral (10�3 pmol/liter � min �
mg/min � kg FFM)

0.41 (�13.3–16.3) 3.24 (�9.79–18.2) �0.24 (�13.0–14.4)

Mean change (95% confidence interval) in variables per 1 SD change in birth weight (473 g), birth weight z-score (1.23), or FGV (1.14 � z-score).
All data were adjusted for sex. FFM, Fat-free mass; Ra, rate of appearance; vol%, volume percent.
a Data were additionally adjusted for current BMI.
b P � 0.05.
c P � 0.01.
d P � 0.001.
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young healthy singletons using different methodologies,
we found no association of FGV on insulin action (9). The
inverse relationship between FGV and insulin action is in
accordance with our previous report of an age-dependent
nongenetic influence of birth weight on in vivo clamp in-
sulin action with a negative association among young
twins and a positive association among elderly twins (42).
The notion of a time- or age-dependent effect of birth
weight on glucose tolerance and insulin action is sup-
ported by studies of offspring of protein-malnourished
rats (43, 44). At 3 months of age, the young offspring of
protein-restricted mothers had an improved glucose tol-
erance; however, at 15 month of age, they were less glu-
cose tolerant compared with controls (44).

Following the line of considering distinct trajectories of
metabolic and anthropometric alterations associated with
impaired fetal growth, we speculate that abdominal obe-
sity proceeds, and may subsequently contribute to, the
development of overt insulin resistance.

Caution is warranted in extrapolating whole-body in-
sulin action determinations to represent accurate mea-
surements of insulin action in the primary target tissues of
insulin including muscle, liver, and fat. Thus, data are
accumulating that insulin action may differ significantly
within each of these tissues with hepatic insulin action
being distinct from peripheral insulin action (19, 45, 46)

as well as adipose tissue insulin action being distinct from
muscle insulin action as recently documented in bed-rest
experiments from our group (47) . Indeed, we have pre-
viously shown that young LBW men exhibit significant
defects of muscle insulin action despite normal whole-
body insulin action (48, 49). Although the notion of or-
gan-specific trajectories of insulin action is in line with the
idea of impaired muscle insulin action preceding overt
whole-body insulin resistance among young LBW men,
more knowledge is required to dissect the distinct effects
of third-trimester growth velocity, as opposed to growth
before or after the third trimester, on both whole-body as
well as organ-specific insulin action. All together, we are
facing a hitherto unrecognized complexity of the associ-
ations as well as underlying mechanisms linking the in-
trauterine environment to the development of overt
whole-body and organ-specific insulin resistance, which
needs to be established to understand, and subsequently to
prevent, the development of T2D in subjects experiencing
impaired fetal growth.

The twin approach is unique in regard to determination
of nongenetic contributions to phenotypic traits. We
found solid evidence for a nongenetic inverse association
between birth weight SDS and visceral and sc adipose tis-
sue. Family studies have suggested that 42–56% of the
variability in visceral and sc fat may be due to genetic

TABLE 5. Intra-twin pair regression analyses of size at birth and FGV on measures of metabolism and body
composition in 42 monozygotic twins

� Birth weight � Birth weight SDS � FGV
Weight (kg) 2.06 (0.47–3.65)a 1.60 (�0.05–3.24) 0.66 (�1.22–2.55)
Height (cm) 2.0 (1.3–2.6)c 1.91 (1.22–2.60)c 1.17 (0.21–2.14)a

BMI (kg/m2) 0.24 (�0.29–0.78) 0.08 (�0.46–0.62) �0.06 (�0.066–0.54)
Waist (cm) 1.73 (0.35–3.11)a 1.13 (�0.31–2.57) 0.03 (�1.65–1.70)
Hip (cm) 1.46 (�0.13–3.04) 1.18 (�0.43–2.79) �0.31 (�2.15–1.53)
Waist/hip ratio 0.01 (�0.00–0.01) 0.00 (�0.01–0.01) 0.00 (�0.01–0.01)
Total fat (g) 104 (�628–836) 274 (�452–999) 103 (�706–911)
Total fat (%) �0.57 (�1.34–0.21) 0.02 (�0.77–0.82) �0.09 (�0.94–0.76)
Lean body mass (g) 1370 (624–2117)c 923 (117–1730)a 653 (�222–1527)
Trunk to leg ratio 0.00 (�0.08–0.08) 0.02 (�0.06–0.10) 0.04 (�0.06–0.13)
Trunk to total fat ratio �0.00 (�0.01–0.01) 0.00 (�0.00–0.01) 0.00 (�01–0.01)
Superficial sc fat (vol%) 0.03 (�0.71–0.76) �0.88 (�1.56 to �0.20)a �0.44 (�1.24–0.35)
Deep sc fat (vol%) �0.39 (�0.65 to �0.13)b �0.46 (�0.70 to �0.21)c �0.10 (�0.41–0.21)
Visceral fat (vol%) �1.17 (�2.44–0.10) �1.89 (�3.06 to �0.71)b �0.65 (�2.08–0.78)
Total sc (vol%) �0.36 (�1.25–0.53) �1.34 (�2.13 to �0.55)c �0.54 (�1.52–0.43)
Abdominal fat (vol%) �1.53 (�3.39–0.33) �3.22 (�4.84–1.60)c �1.19 (�3.27–0.88)
FPIR (pmol/liter � min) 1.5 (�326–329) 50 (�137–237) 1.5 (�200–203)
Ra glucose (mg/min � kg FFM) �0.12 (�0.29–0.04) �0.06 (�0.23–0.11) �0.12 (�0.29–0.05)
M-value (mg/min � kg FFM) �0.06 (�1.07–0.94) �0.28 (�0.96–0.10) �0.67 (�1.36–0.01)
Di peripheral (10�3 pmol/liter � min �

mg/min � kg FFM)
33 (�1835–1900) 188 (�1660–2036) �1104 (�3080–873)

Intra-twin pair change (95% confidence interval) per 1 SD change in intra-twin pair birth weight (406 g), birth weight SDS (1.24), and FGV (1.33).
Analyses were adjusted for sex. FFM, Fat-free mass; Ra, rate of appearance; vol%, volume percent.
a P � 0.05.
b P � 0.01.
c P � 0.001.
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causes (50, 51). In addition, recent genome-wide associ-
ation studies have identified common variants in the FTO
gene to be associated with obesity and provided further
evidence for a genetic influence on common obesity (52).
Altogether, central obesity appears to be determined by
both genetic and nongenetic factors.

In conclusion, abdominal adiposity including both sc
and visceral fat may constitute primary nongenetic defects
associated with reduced fetal growth before the third tri-
mester, preceding overt defects of insulin secretion and
action. Reduced FGV during vs. before the third trimester
may define distinct adult trajectories of metabolic and an-
thropometric characteristics influencing risk of develop-
ing T2D.
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