102 research outputs found

    CIRCULATORY SYSTEM ANALYSIS BY A STOCHASTIC METHOD USING AN ANALOGUE CORRELATOR

    Get PDF

    chronic administration of quercetin induces biomechanical and pharmacological remodeling in the rat coronary arteries

    Get PDF
    Acute dilation brought about by the dietary flavonoid quercetin in coronary arterioles has been described earlier, but no information is available on its chronic effects. Male Wistar rats (body weight about 190 g) were divided to two groups: the quercetin-treated group (n=22) had quercetin supplementation of approximately 30 mg/kg/day, whereas the control group (n=20) had none. After eight weeks of treatment, intramural coronary arterioles with identical passive diameters (178±14 µm and 171±9 µm) were prepared and their biomechanics and pharmacological reactivities were tested using pressure arteriography ex vivo. The spontaneous tone of quercetin-treated arteries was higher (16.5±1.9 % vs. 12.9±0.9 %), which resulted in a reduced lumen size (144±9 μm vs. 167±12 μm), thicker vascular wall (22.6±1.8 μm vs. 17.4±1.6 μm) and decreased tangential wall stress (16.8±1.1 kPa vs. 20.5±1.6 kPa) in supplemented animals (in spontaneous tone at 50 mm Hg, p<0.01 in all these comparisons). Elevated basal NO release resulted in increased endothelial dilation in quercetin-treated animals, especially at higher intraluminal pressures (10.8±2.5 % vs. 5.7±1.3 % at 70 mm Hg, p<0.01). We found remodeling of the geometry of coronary arterioles to ensure higher dilatory reserve and nitrogen monoxide production, as well as lowered elastic stress of the vessel wall

    Axial stretching of extremity artery induces reversible hyperpolarization of smooth muscle cell membrane in vivo

    Get PDF
    Circumferential stretch due to increases in pressure induces vascular smooth muscle cell depolarization and contraction known as the myogenic response. The aim of this study was to determine the in vivoeffects of axial-longitudinal stretch of the rat saphenous artery (SA) on smooth muscle membrane potential (Em) and on external diameter. Consecutive elongations of the SA were carried out from resting length (L0) in 10% increments up to 140% L0 while changes in membrane potential and diameter were determined in intact and de-endothelized vessels. Axial stretching resulted in a small initial depolarization at 120% of L0 followed by a progressive 20 to 33% hyperpolarizaion of vascular smooth muscle between 130% and 140% of L0. At 140%, an average maximal 10.6 mV reversible hyperpolarization was measured compared to –41.2±0.49 mV Em at 100% L0. De-endothelialization completely eliminated the hyperpolarization to axial stretching and augmented the reduction of diameter beyond 120% L0. These results indicate that arteries have a mechanism to protect them from vasospasm that could otherwise occur with movements of the extremities

    SNP-specific extraction of haplotype-resolved targeted genomic regions

    Get PDF
    The availability of genotyping platforms for comprehensive genetic analysis of complex traits has resulted in a plethora of studies reporting the association of specific single-nucleotide polymorphisms (SNPs) with common diseases or drug responses. However, detailed genetic analysis of these associated regions that would correlate particular polymorphisms to phenotypes has lagged. This is primarily due to the lack of technologies that provide additional sequence information about genomic regions surrounding specific SNPs, preferably in haploid form. Enrichment methods for resequencing should have the specificity to provide DNA linked to SNPs of interest with sufficient quality to be used in a cost-effective and high-throughput manner. We describe a simple, automated method of targeting specific sequences of genomic DNA that can directly be used in downstream applications. The method isolates haploid chromosomal regions flanking targeted SNPs by hybridizing and enzymatically elongating oligonucleotides with biotinylated nucleotides based on their selective binding to unique sequence elements that differentiate one allele from any other differing sequence. The targeted genomic region is captured by streptavidin-coated magnetic particles and analyzed by standard genotyping, sequencing or microarray analysis. We applied this technology to determine contiguous molecular haplotypes across a ∼150 kb genomic region of the major histocompatibility complex

    Quantitative Analysis of Vasodilatory Action of Quercetin on Intramural Coronary Resistance Arteries of the Rat In Vitro

    Get PDF
    Background: Dietary quercetin improves cardiovascular health, relaxes some vascular smooth muscle and has been demonstrated to serve as a substrate for the cyclooxygenase enzyme. Aims: 1. To test quantitatively a potential direct vasodilatory effect on intramural coronary resistance artery segments, in different concentrations. 2. To scale vasorelaxation at different intraluminal pressure loads on such vessels of different size. 3. To test the potential role of prostanoids in vasodilatation induced by quercetin. Methods: Coronary arterioles (70-240 mu m) were prepared from 24 rats and pressurized in PSS, using a pressure microangiometer. Results: The spontaneous tone that developed at 50 mmHg was relaxed by quercetin in the 10(-9) moles/lit concentration (p<0.05), while 10(-5) moles/lit caused full relaxation. Significant relaxation was observed at all pressure levels (10-100 mmHg) at 10(-7) moles/lit concentration of quercetin. The cyclooxygenase blocker indomethacin (10(-5) moles/lit) induced no relaxation but contraction when physiological concentrations of quercetin were present in the tissue bath (p<0.02 with Anova), this contraction being more prominent in smaller vessels and in the higher pressure range (p<0.05, Pearson correlation). A further 2-8% contraction could be elicited by the NO blocker L-NAME (10(-4) moles/lit). Conclusion: These results demonstrate that circulating levels of quercetin (10(-7) moles/lit) exhibit a substantial coronary vasodilatory effect. The extent of it is commeasurable with that of several other physiological mechanisms of coronary blood flow control. At least part of this relaxation is the result of an altered balance toward the production of endogenous vasodilatory prostanoids in the coronary arteriole wall

    Follow-Up Analysis of Genome-Wide Association Data Identifies Novel Loci for Type 1 Diabetes

    Get PDF
    OBJECTIVE—Two recent genome-wide association (GWA) studies have revealed novel loci for type 1 diabetes, a common multifactorial disease with a strong genetic component. To fully utilize the GWA data that we had obtained by genotyping 563 type 1 diabetes probands and 1,146 control subjects, as well as 483 case subject–parent trios, using the Illumina HumanHap550 BeadChip, we designed a full stage 2 study to capture other possible association signals

    Next-generation HLA typing of 382 International Histocompatibility Working Group reference B-lymphoblastoid cell lines: Report from the 17th International HLA and Immunogenetics Workshop

    Get PDF
    Extended molecular characterization of HLA genes in the IHWG reference B-lymphoblastoid cell lines (B-LCLs) was one of the major goals for the 17th International HLA and Immunogenetics Workshop (IHIW). Although reference B-LCLs have been examined extensively in previous workshops complete high-resolution typing was not completed for all the classical class I and class II HLA genes. To address this, we conducted a single-blind study where select panels of B-LCL genomic DNA samples were distributed to multiple laboratories for HLA genotyping by next-generation sequencing methods. Identical cell panels comprised of 24 and 346 samples were distributed and typed by at least four laboratories in order to derive accurate consensus HLA genotypes. Overall concordance rates calculated at both 2- and 4-field allele-level resolutions ranged from 90.4% to 100%. Concordance for the class I genes ranged from 91.7 to 100%, whereas concordance for class II genes was variable; the lowest observed at HLA-DRB3 (84.2%). At the maximum allele-resolution 78 B-LCLs were defined as homozygous for all 11 loci. We identified 11 novel exon polymorphisms in the entire cell panel. A comparison of the B-LCLs NGS HLA genotypes with the HLA genotypes catalogued in the IPD-IMGT/HLA Database Cell Repository, revealed an overall allele match at 68.4%. Typing discrepancies between the two datasets were mostly due to the lower-resolution historical typing methods resulting in incomplete HLA genotypes for some samples listed in the IPD-IMGT/HLA Database Cell Repository. Our approach of multiple-laboratory NGS HLA typing of the B-LCLs has provided accurate genotyping data. The data generated by the tremendous collaborative efforts of the 17th IHIW participants is useful for updating the current cell and sequence databases and will be a valuable resource for future studies

    Heritability of the dimensions, compliance and distensibility of the human internal jugular vein wall

    Get PDF
    AIMS: The elasticity of the internal jugular vein (IJV) is a major determinant of cerebral venous drainage and right atrium venous return. However, the level of genetic determination of IJV dimensions, compliance and distensibility has not been studied yet. METHODS: 170 adult Caucasian twins (43 monozygotic [MZ] and 42 dizygotic [DZ] pairs) were involved from the Italian twin registry. Anteroposterior and mediolateral diameters of the IJV were measured bilaterally by ultrasonography. Measurements were made both in the sitting and supine positions, with or without Valsalva maneuver. Univariate quantitative genetic modeling was performed. RESULTS: Genetic factors are responsible for 30-70% of the measured properties of IJV at higher venous pressure even after adjustment for age and gender. The highest level of inheritance was found in the supine position regarding compliance (62%) and venous diameter during Valsalva (69%). Environmental and measurement-related factors instead are more important in the sitting position, when the venous pressure is low and the venous lumen is almost collapsed. The range of capacity changes between the lowest and highest intraluminal venous pressure (full distension range) are mainly determined by genetic factors (58%). CONCLUSIONS: Our study has shown substantial heritability of IJV biomechanics at higher venous pressures even after adjustment for age and gender. These findings yield an important insight to what degree the geometric and elastic properties of the vascular wall are formed by genetic and by environmental factors in humans

    A Genome-Wide Meta-Analysis of Six Type 1 Diabetes Cohorts Identifies Multiple Associated Loci

    Get PDF
    Diabetes impacts approximately 200 million people worldwide, of whom approximately 10% are affected by type 1 diabetes (T1D). The application of genome-wide association studies (GWAS) has robustly revealed dozens of genetic contributors to the pathogenesis of T1D, with the most recent meta-analysis identifying in excess of 40 loci. To identify additional genetic loci for T1D susceptibility, we examined associations in the largest meta-analysis to date between the disease and ∼2.54 million SNPs in a combined cohort of 9,934 cases and 16,956 controls. Targeted follow-up of 53 SNPs in 1,120 affected trios uncovered three new loci associated with T1D that reached genome-wide significance. The most significantly associated SNP (rs539514, P = 5.66×10−11) resides in an intronic region of the LMO7 (LIM domain only 7) gene on 13q22. The second most significantly associated SNP (rs478222, P = 3.50×10−9) resides in an intronic region of the EFR3B (protein EFR3 homolog B) gene on 2p23; however, the region of linkage disequilibrium is approximately 800 kb and harbors additional multiple genes, including NCOA1, C2orf79, CENPO, ADCY3, DNAJC27, POMC, and DNMT3A. The third most significantly associated SNP (rs924043, P = 8.06×10−9) lies in an intergenic region on 6q27, where the region of association is approximately 900 kb and harbors multiple genes including WDR27, C6orf120, PHF10, TCTE3, C6orf208, LOC154449, DLL1, FAM120B, PSMB1, TBP, and PCD2. These latest associated regions add to the growing repertoire of gene networks predisposing to T1D
    corecore