15 research outputs found

    Genome wide analysis of gene dosage in 24,092 individuals estimates that 10,000 genes modulate cognitive ability

    Get PDF
    International audienceGenomic copy number variants (CNVs) are routinely identified and reported back to patients with neuropsychiatric disorders, but their quantitative effects on essential traits such as cognitive ability are poorly documented. We have recently shown that the effect size of deletions on cognitive ability can be statistically predicted using measures of intolerance to haploinsufficiency. However, the effect sizes of duplications remain unknown. It is also unknown if the effect of multigenic CNVs are driven by a few genes intolerant to haploinsufficiency or distributed across tolerant genes as well. Here, we identified all CNVs > 50 kilobases in 24,092 individuals from unselected and autism cohorts with assessments of general intelligence. Statistical models used measures of intolerance to haploinsufficiency of genes included in CNVs to predict their effect size on intelligence. Intolerant genes decrease general intelligence by 0.8 and 2.6 points of intelligence quotient when duplicated or deleted, respectively. Effect sizes showed no heterogeneity across cohorts. Validation analyses demonstrated that models could predict CNV effect sizes with 78% accuracy. Data on the inheritance of 27,766 CNVs showed that deletions and duplications with the same effect size on intelligence occur de novo at the same frequency. We estimated that around 10,000 intolerant and tolerant genes negatively affect intelligence when deleted, and less than 2% have large effect sizes. Genes encompassed in CNVs were not enriched in any GOterms but gene regulation and brain expression were GOterms overrepresented in the intolerant subgroup. Such pervasive effects on cognition may be related to emergent properties of the genome not restricted to a limited number of biological pathways

    Widening of the genetic and clinical spectrum of Lamb-Shaffer syndrome, a neurodevelopmental disorder due to SOX5 haploinsufficiency

    Get PDF
    Purpose Lamb-Shaffer syndrome (LAMSHF) is a neurodevelopmental disorder described in just over two dozen patients with heterozygous genetic alterations involving SOX5, a gene encoding a transcription factor regulating cell fate and differentiation in neurogenesis and other discrete developmental processes. The genetic alterations described so far are mainly microdeletions. The present study was aimed at increasing our understanding of LAMSHF, its clinical and genetic spectrum, and the pathophysiological mechanisms involved. Methods Clinical and genetic data were collected through GeneMatcher and clinical or genetic networks for 41 novel patients harboring various types ofSOX5 alterations. Functional consequences of selected substitutions were investigated. Results Microdeletions and truncating variants occurred throughout SOX5. In contrast, most missense variants clustered in the pivotal SOX-specific high-mobility-group domain. The latter variants prevented SOX5 from binding DNA and promoting transactivation in vitro, whereas missense variants located outside the high-mobility-group domain did not. Clinical manifestations and severity varied among patients. No clear genotype-phenotype correlations were found, except that missense variants outside the high-mobility-group domain were generally better tolerated. Conclusions This study extends the clinical and genetic spectrum associated with LAMSHF and consolidates evidence that SOX5 haploinsufficiency leads to variable degrees of intellectual disability, language delay, and other clinical features

    NEXMIF encephalopathy:an X-linked disorder with male and female phenotypic patterns

    Get PDF
    Purpose Pathogenic variants in the X-linked gene NEXMIF (previously KIAA2022) are associated with intellectual disability (ID), autism spectrum disorder, and epilepsy. We aimed to delineate the female and male phenotypic spectrum of NEXMIF encephalopathy. Methods Through an international collaboration, we analyzed the phenotypes and genotypes of 87 patients with NEXMIF encephalopathy. Results Sixty-three females and 24 males (46 new patients) with NEXMIF encephalopathy were studied, with 30 novel variants. Phenotypic features included developmental delay/ID in 86/87 (99%), seizures in 71/86 (83%) and multiple comorbidities. Generalized seizures predominated including myoclonic seizures and absence seizures (both 46/70, 66%), absence with eyelid myoclonia (17/70, 24%), and atonic seizures (30/70, 43%). Males had more severe developmental impairment; females had epilepsy more frequently, and varied from unaffected to severely affected. All NEXMIF pathogenic variants led to a premature stop codon or were deleterious structural variants. Most arose de novo, although X-linked segregation occurred for both sexes. Somatic mosaicism occurred in two males and a family with suspected parental mosaicism. Conclusion NEXMIF encephalopathy is an X-linked, generalized developmental and epileptic encephalopathy characterized by myoclonic-atonic epilepsy overlapping with eyelid myoclonia with absence. Some patients have developmental encephalopathy without epilepsy. Males have more severe developmental impairment. NEXMIF encephalopathy arises due to loss-of-function variants

    DNA methylation episignature in Gabriele-de Vries syndrome

    No full text
    International audiencePURPOSE: Gabriele-de Vries syndrome (GADEVS) is a rare genetic disorder characterized by developmental delay and/or intellectual disability, hypotonia, feeding difficulties, and distinct facial features. To refine the phenotype and to better understand the molecular basis of the syndrome, we analyzed clinical data and performed genome-wide DNA methylation analysis of a series of individuals carrying a YY1 variant. METHODS: Clinical data were collected for 13 individuals not yet reported through an international call for collaboration. DNA was collected for 11 of these individuals and 2 previously reported individuals in an attempt to delineate a specific DNA methylation signature in GADEVS. RESULTS: Phenotype in most individuals overlapped with the previously described features. We described 1 individual with atypical phenotype, heterozygous for a missense variant in a domain usually not involved in individuals with YY1 pathogenic missense variations. We also described a specific peripheral blood DNA methylation profile associated with YY1 variants. CONCLUSION: We reported a distinct DNA methylation episignature in GADEVS. We expanded the clinical profile of GADEVS to include thin/sparse hair and cryptorchidism. We also highlighted the utility of DNA methylation episignature analysis for classification of variants of unknown clinical significance

    Varia

    No full text
    Quoi de commun entre un label de musique d’extrême-droite fondé par Jean-Marie Le Pen, la recherche sur le rap en Afrique, le parcours de vie d’un militant communiste adepte du rock, le sampling dans le rap palestinien, la sémiologie de Bowie, les questions existentielles de musiciens pop en Suisse, la trajectoire sociale de musiciens punks portugais ou le croisement des langues chez la Mano Negra ? Rien, et c’est tout le propos de ce numéro de la revue Volume ! auquel 35 auteurs ont contribué. In this new Varia issue of Volume !, 35 authors tackle an eclectic set of subjects such as the creation of a far-right music label by National Front leader Jean-Marie Le Pen, rap studies in Africa, the life of a Communist activist and rock fan, sampling in Palestinian rap (in Lebanon), David Bowie semiotics, pop music's existential questions in Switzerland, Portuguese punks' career paths and Mano Negra's linguistic play

    Widening of the genetic and clinical spectrum of Lamb–Shaffer syndrome, a neurodevelopmental disorder due to SOX5 haploinsufficiency

    No full text
    International audiencePURPOSE: Lamb-Shaffer syndrome (LAMSHF) is a neurodevelopmental disorder described in just over two dozen patients with heterozygous genetic alterations involving SOX5, a gene encoding a transcription factor regulating cell fate and differentiation in neurogenesis and other discrete developmental processes. The genetic alterations described so far are mainly microdeletions. The present study was aimed at increasing our understanding of LAMSHF, its clinical and genetic spectrum, and the pathophysiological mechanisms involved.METHODS: Clinical and genetic data were collected through GeneMatcher and clinical or genetic networks for 41 novel patients harboring various types of SOX5 alterations. Functional consequences of selected substitutions were investigated.RESULTS: Microdeletions and truncating variants occurred throughout SOX5. In contrast, most missense variants clustered in the pivotal SOX-specific high-mobility-group domain. The latter variants prevented SOX5 from binding DNA and promoting transactivation in vitro, whereas missense variants located outside the high-mobility-group domain did not. Clinical manifestations and severity varied among patients. No clear genotype-phenotype correlations were found, except that missense variants outside the high-mobility-group domain were generally better tolerated.CONCLUSIONS:This study extends the clinical and genetic spectrum associated with LAMSHF and consolidates evidence that SOX5 haploinsufficiency leads to variable degrees of intellectual disability, language delay, and other clinical features

    NEXMIF encephalopathy : an X-linked disorder with male and female phenotypic patterns

    No full text
    Pathogenic variants in the X-linked gene NEXMIF (previously KIAA2022) are associated with intellectual disability (ID), autism spectrum disorder, and epilepsy. We aimed to delineate the female and male phenotypic spectrum of NEXMIF encephalopathy
    corecore