5 research outputs found

    Maturation of the gastric microvasculature in Xenopus laevis (Lissamphibia, Anura) occurs at the transition from the herbivorous to the carnivorous lifestyle, predominantly by intussuceptive microvascular growth (IMG): a scanning electron microscope study of microvascular corrosion casts and correlative light microscopy

    Get PDF
    The microvascular bed of the stomach of Xenopus laevis and the changes it undergoes when the herbivorous tadpole becomes a carnivorous adult were studied by scanning electron microscopy of vascular corrosion casts and light microscopy of stained tissue sections. In tadpoles an upper and a lower gastric artery supplied, and upper, middle and lower medial and lateral gastric veins drained the vertically extending stomach. During metamorphosis, the stomach gained a horizontal cranio-caudal extension and vessels accordingly become dorsal and ventral gastric arteries, and anterior, middle and posterior gastric veins, respectively. Up to stage 64 (late climax) mucosal capillaries formed a polygonal network of wide immature-looking capillaries ensheathing gastric glands in a basket-like manner. From stage 64 onwards, blood vessels of the stomach appeared mature, revealed a clear hierarchy and were correlated closely with the histomorphology of the stomach, which had also gained the adult pattern. Within the gastric mucosa, ascending arterioles branched in a fountain-like pattern into wide subepithelial capillaries establishing a centripetal blood flow along the gastric glands, which makes an ultrashort control loop of glandular cells within the branched tubular gastric glands very unlikely. Formation of the stomach external muscular layer started at stage 57 when smooth muscle cells locally formed a single longitudinal and one-to-two single circular layers. Abundant signs of intussusceptive microvascular growth and rare vascular sprouts in vascular corrosion casts indicated that the larval-to-adult microvascular pattern formation of the stomach of Xenopus laevis Daudin occurs predominantly by non-sprouting angiogenesis

    A lab-on-a-chip system with an embedded porous membrane-based impedance biosensor array for nanoparticle risk assessment on placental Bewo trophoblast cells

    Get PDF
    The human placenta is a unique organ serving as the lung, gut, liver, and kidney of the fetus, mediating the exchange of different endogenous as well as exogenous substances and gases between the mother and fetus during pregnancy. Additionally, the placental barrier protects the fetus from a range of environmental toxins, bacterial and viral infections, since any contaminant bridging the placenta may have unforeseeable effects on embryonal and fetal development. A more recent concern in placenta research, however, involves the ability of engineered nanoparticles to cross the placental barrier and/or affect its barrier function. To advance nanoparticle risk assessment at the human placental barrier, we have developed as proof-of-principle a highly integrated placenta-on-a-chip system containing embedded membrane-bound impedance microsensor arrays capable of non-invasively monitoring placental barrier integrity. Barrier integrity is continuously and label-free evaluated using porous membrane-based interdigitated electrode structures located on top of a porous PET membrane supporting a barrier of trophoblast-derived BeWo cell barrier in the absence and presence of standardized silicon dioxide (SiO2), titanium dioxide (TiO2), and zinc oxide (ZnO) nanomaterials.This work has been funded by the European Union’s Horizon 2020 research and innovation program under grant agreement No. 685817.Peer reviewe

    Anatomical Science International / Maturation of the gastric microvasculature in Xenopus laevis (Lissamphibia, Anura) occurs at the transition from the herbivorous to the carnivorous lifestyle, predominantly by intussuceptive microvascular growth (IMG) : a scanning electron microscope study of microvascular corrosion casts and correlative light microscopy

    No full text
    The microvascular bed of the stomach of Xenopus laevis and the changes it undergoes when the herbivorous tadpole becomes a carnivorous adult were studied by scanning electron microscopy of vascular corrosion casts and light microscopy of stained tissue sections. In tadpoles an upper and a lower gastric artery supplied, and upper, middle and lower medial and lateral gastric veins drained the vertically extending stomach. During metamorphosis, the stomach gained a horizontal cranio-caudal extension and vessels accordingly become dorsal and ventral gastric arteries, and anterior, middle and posterior gastric veins, respectively. Up to stage 64 (late climax) mucosal capillaries formed a polygonal network of wide immature-looking capillaries ensheathing gastric glands in a basket-like manner. From stage 64 onwards, blood vessels of the stomach appeared mature, revealed a clear hierarchy and were correlated closely with the histomorphology of the stomach, which had also gained the adult pattern. Within the gastric mucosa, ascending arterioles branched in a fountain-like pattern into wide subepithelial capillaries establishing a centripetal blood flow along the gastric glands, which makes an ultrashort control loop of glandular cells within the branched tubular gastric glands very unlikely. Formation of the stomach external muscular layer started at stage 57 when smooth muscle cells locally formed a single longitudinal and one-to-two single circular layers. Abundant signs of intussusceptive microvascular growth and rare vascular sprouts in vascular corrosion casts indicated that the larval-to-adult microvascular pattern formation of the stomach of Xenopus laevis Daudin occurs predominantly by non-sprouting angiogenesis.(VLID)439519
    corecore