26 research outputs found

    Drosophila RISC Component VIG and Its Homolog Vig2 Impact Heterochromatin Formation

    Get PDF
    Heterochromatin formation plays an important role in gene regulation and the maintenance of genome integrity. Here we present results from a study of the D. melanogaster gene vig, encoding an RNAi complex component and its homolog vig2 (CG11844) that support their involvement in heterochromatin formation and/or maintenance. Protein null mutations vigEP812 and vig2PL470 act as modifiers of Position Effect Variegation (PEV). VIG and Vig2 are present in polytene chromosomes and partially overlap with HP1. Quantitative immunoblots show depletion of HP1 and HP2 (large isoform) in isolated nuclei from the vigEP812 mutant. The vig2PL470 mutant strain demonstrates a decreased level of H3K9me2. Pull-down experiments using antibodies specific to HP1 recovered both VIG and Vig2. The association between HP1 and both VIG and Vig2 proteins depends on an RNA component. The above data and the developmental profiles of the two genes suggest that Vig2 may be involved in heterochromatin targeting and establishment early in development, while VIG may have a role in stabilizing HP1/HP2 chromatin binding during later stages

    Interferon antagonist proteins of influenza and vaccinia viruses are suppressors of RNA silencing

    Get PDF
    Homology-dependent RNA silencing occurs in many eukaryotic cells. We reported recently that nodaviral infection triggers an RNA silencing-based antiviral response (RSAR) in Drosophila, which is capable of a rapid virus clearance in the absence of expression of a virus-encoded suppressor. Here, we present further evidence to show that the Drosophila RSAR is mediated by the RNA interference (RNAi) pathway, as the viral suppressor of RSAR inhibits experimental RNAi initiated by exogenous double-stranded RNA and RSAR requires the RNAi machinery. We demonstrate that RNAi also functions as a natural antiviral immunity in mosquito cells. We further show that vaccinia virus and human influenza A, B, and C viruses each encode an essential protein that suppresses RSAR in Drosophila. The vaccinia and influenza viral suppressors, E3L and NS1, are distinct double-stranded RNA-binding proteins and essential for pathogenesis by inhibiting the mammalian IFN-regulated innate antiviral response. We found that the double-stranded RNA-binding domain of NS1, implicated in innate immunity suppression, is both essential and sufficient for RSAR suppression. These findings provide evidence that mammalian virus proteins can inhibit RNA silencing, implicating this mechanism as a nucleic acid-based antiviral immunity in mammalian cells

    Nutrient Sensor in the Brain Directs the Action of the Brain-Gut Axis in Drosophila

    Get PDF
    Animals can detect and consume nutritive sugars without the influence of taste. However, the identity of the taste-independent nutrient sensor and the mechanism by which animals respond to the nutritional value of sugar are unclear. Here, we report that six neurosecretory cells in the Drosophila brain that produce Diuretic hormone 44 (Dh44), a homolog of the mammalian corticotropin-releasing hormone (CRH), were specifically activated by nutritive sugars. Flies in which the activity of these neurons or the expression of Dh44 was disrupted failed to select nutritive sugars. Manipulation of the function of Dh44 receptors had a similar effect. Notably, artificial activation of Dh44 receptor-1 neurons resulted in proboscis extensions and frequent episodes of excretion. Conversely, reduced Dh44 activity led to decreased excretion. Together, these actions facilitate ingestion and digestion of nutritive foods. We propose that the Dh44 system directs the detection and consumption of nutritive sugars through a positive feedback loop

    An endogenous small interfering RNA pathway in Drosophila

    Get PDF
    Drosophila endogenous small RNAs are categorized according to their mechanisms of biogenesis and the Argonaute protein to which they bind. MicroRNAs are a class of ubiquitously expressed RNAs of 22 nucleotides in length, which arise from structured precursors through the action of Drosha - Pasha and Dicer- 1-Loquacious complexes(1-7). These join Argonaute-1 to regulate gene expression(8,9). A second endogenous small RNA class, the Piwi-interacting RNAs, bind Piwi proteins and suppress transposons(10,11). Piwi- interacting RNAs are restricted to the gonad, and at least a subset of these arises by Piwi- catalysed cleavage of single-stranded RNAs12,13. Here we show that Drosophila generates a third small RNA class, endogenous small interfering RNAs, in both gonadal and somatic tissues. Production of these RNAs requires Dicer- 2, but a subset depends preferentially on Loquacious(1,4,5) rather than the canonical Dicer- 2 partner, R2D2 ( ref. 14). Endogenous small interfering RNAs arise both from convergent transcription units and from structured genomic loci in a tissue- specific fashion. They predominantly join Argonaute- 2 and have the capacity, as a class, to target both protein- coding genes and mobile elements. These observations expand the repertoire of small RNAs in Drosophila, adding a class that blurs distinctions based on known biogenesis mechanisms and functional roles

    Comparative Genomic Analysis and Identification of Argonaute and Dicer Family Homologues in Anapheles gambia

    No full text
    The growth and maturation of biological creatures is the manifestation of an intrinsic program in intra and extra nuclear genetic material. However, such manifestation is not merely the direct expression and codification of genetic information into biochemical pathways. The decoding process requires an integrated network of regulatory mechanisms that allows the interaction between inherited information and environment. Though a large amount of such controls are shared among a variety of different organisms, the advent of new biological features, as multicellularity and tissue-differentiation, also required the development of novel regulatory pathways. This necessity for greater informational content however, was not met by the mere addition of transcriptional units to genomes, as there is a complete lack of correlation between DNA content (also known as C-value) and organismal complexity. *Includes research mentorship provided by Principal Investigator Dr. ShouWei Ding, and the University of California, Riverside

    Il dominio dello zucchero sul cervello

    No full text
    Il cibo che mangiamo ha un effetto profondo sul funzionamento del nostro cervello: certi cibi, come lo zucchero e i grassi, alterano i sistemi sensoriali e di piacere. In questo incontro si evidenzierà l’importanza dell’alimentazione sul nostro stato di salute e malattia e come lo scambio bidirezionale tra cibo, DNA e fisiologia cellulare avviene nel nostro corpo. Monica Dus è docente e direttrice del laboratorio di Genetica e Neuroepigenetica all'University of Michigan, finanziato dal National Institute of Health e da privati. Per maggiori informazioni sulle sue ricerche: https://sites.lsa.umich.edu/dus-lab/ - Twitter: @Hardkandy000

    Analysis of the Interaction of the Adenovirus L1 52/55-Kilodalton and IVa2 Proteins with the Packaging Sequence In Vivo and In Vitro

    No full text
    We previously showed that the adenovirus IVa2 and L1 52/55-kDa proteins interact in infected cells and the IVa2 protein is part of two virus-specific complexes (x and y) formed in vitro with repeated elements of the packaging sequence called the A1-A2 repeats. Here we demonstrate that both the IVa2 and L1 52/55-kDa proteins bind in vivo to the packaging sequence and that each protein-DNA interaction is independent of the other. There is a strong and direct interaction of the IVa2 protein with DNA in vitro. This interaction is observed when probes containing the A1-A2 or A4-A5 repeats are used, but it is not found by using an A5-A6 probe. Furthermore, we show that complex x is likely a heterodimer of IVa2 and an unknown viral protein, while complex y is a monomer or multimer of IVa2. No in vitro interaction of purified L1 52/55-kDa protein with the packaging sequence was found, suggesting that the L1 52/55-kDa protein-DNA interaction may be mediated by an intermediate protein. Results support roles for both the L1 52/55-kDa and IVa2 proteins in DNA encapsidation

    Discrete small RNA-generating loci as master regulators of transposon activity in Drosophila. Cell 128

    Get PDF
    Drosophila Piwi-family proteins have been implicated in transposon control. Here, we examine piwi-interacting RNAs (piRNAs) associated with each Drosophila Piwi protein and find that Piwi and Aubergine bind RNAs that are predominantly antisense to transposons, whereas Ago3 complexes contain predominantly sense piRNAs. As in mammals, the majority of Drosophila piRNAs are derived from discrete genomic loci. These loci comprise mainly defective transposon sequences, and some have previously been identified as master regulators of transposon activity. Our data suggest that heterochromatic piRNA loci interact with potentially active, euchromatic transposons to form an adaptive system for transposon control. Complementary relationships between sense and antisense piRNA populations suggest an amplification loop wherein each piRNAdirected cleavage event generates the 5 0 end of a new piRNA. Thus, sense piRNAs, formed following cleavage of transposon mRNAs may enhance production of antisense piRNAs, complementary to active elements, by directing cleavage of transcripts from master control loci

    Benzoyl chloride derivatization with liquid chromatography–mass spectrometry for targeted metabolomics of neurochemicals in biological samples

    No full text
    Widely targeted metabolomic assays are useful because they provide quantitative data on large groups of related compounds. We report a high performance liquid chromatography-tandem mass spectrometry (HPLC–MS/MS) method that utilizes benzoyl chloride labeling for 70 neurologically relevant compounds, including catecholamines, indoleamines, amino acids, polyamines, trace amines, antioxidants, energy compounds, and their metabolites. The method includes neurotransmitters and metabolites found in both vertebrates and insects. This method was applied to analyze microdialysate from rats, human cerebrospinal fluid, human serum, fly tissue homogenate, and fly hemolymph, demonstrating its broad versatility for multiple physiological contexts and model systems. Limits of detection for most assayed compounds were below 10 nM, relative standard deviations were below 10%, and carryover was less than 5% for 70 compounds separated in 20 min, with a total analysis time of 33 min. This broadly applicable method provides robust monitoring of multiple analytes, utilizes small sample sizes, and can be applied to diverse matrices. The assay will be of value for evaluating normal physiological changes in metabolism in neurochemical systems. The results demonstrate the utility of benzoyl chloride labeling with HPLC–MS/MS for widely targeted metabolomics assays. Highlights •Improved reaction conditions for benzoyl chloride labeling for HPLC–MS/MS analysis. •Novel assay of 70 neurologically relevant compounds using benzoyl chloride labeling. •Analysis of rat dialysate, fly tissue homogenate and hemolymph, human CSF and serum. •Stable-isotope labeled internal standard for all analytes for quantification
    corecore