422 research outputs found

    Defective graphene as a metal-free catalyst for chemoselective olefin hydrogenation by hydrazine

    Full text link
    [EN] A series of defective graphenes containing or not containing N, B, S and other heteroatoms exhibited general activity as metal-free catalysts for the hydrogenation of C=C double bonds by hydrazine in the presence of oxygen. The best-performing graphene was the one obtained from the pyrolysis of alginate and subsequent exfoliation by sonication. The material was reusable in three consecutive runs without decay in its catalytic activity, and it exhibited 99% chemoselectivity for C=C double bonds vs. nitro group hydrogenation in contrast with conventional Pd supported on carbon, which was almost unselective. Theoretical calculations using a model for defective graphene for styrene hydrogenation showed adsorption of the substrate by - stacking, resulting in activation of the double bond and direct interaction of cis-diimide with the C=C group.AD thanks the University Grants Commission, New Delhi, for the award of an Assistant Professorship under its Faculty Recharge Program. AD also thanks the Department of Science and Technology, India, for the financial support through Extra Mural Research Funding (EMR/2016/006500). Financial support by the Spanish Ministry of Economy and Competitiveness (Severo Ochoa SEV2016-0683, Grapas and CTQ2015-69563-CO2-1) and Generalitat Valenciana (Prometeo2017-083) is gratefully acknowledged.Dhakshinamoorthy, A.; He, J.; Franconetti, A.; Asiri, AM.; Primo Arnau, AM.; García Gómez, H. (2018). Defective graphene as a metal-free catalyst for chemoselective olefin hydrogenation by hydrazine. Catalysis Science & Technology. 8(6):1589-1598. https://doi.org/10.1039/c7cy02404eS1589159886J. G. de Vries and C. J.Elsevier , Handbook of homogeneous hydrogenations , Wiley-VCH , New York , 2007Monfette, S., Turner, Z. R., Semproni, S. P., & Chirik, P. J. (2012). Enantiopure C1-Symmetric Bis(imino)pyridine Cobalt Complexes for Asymmetric Alkene Hydrogenation. Journal of the American Chemical Society, 134(10), 4561-4564. doi:10.1021/ja300503kGärtner, D., Welther, A., Rad, B. R., Wolf, R., & Jacobi von Wangelin, A. (2014). Heteroatom-Free Arene-Cobalt and Arene-Iron Catalysts for Hydrogenations. Angewandte Chemie International Edition, 53(14), 3722-3726. doi:10.1002/anie.201308967Hudson, R., Hamasaka, G., Osako, T., Yamada, Y. M. A., Li, C.-J., Uozumi, Y., & Moores, A. (2013). Highly efficient iron(0) nanoparticle-catalyzed hydrogenation in water in flow. Green Chemistry, 15(8), 2141. doi:10.1039/c3gc40789fStein, M., Wieland, J., Steurer, P., Tölle, F., Mülhaupt, R., & Breit, B. (2011). Iron Nanoparticles Supported on Chemically-Derived Graphene: Catalytic Hydrogenation with Magnetic Catalyst Separation. Advanced Synthesis & Catalysis, 353(4), 523-527. doi:10.1002/adsc.201000877Mondal, J., Nguyen, K. T., Jana, A., Kurniawan, K., Borah, P., Zhao, Y., & Bhaumik, A. (2014). Efficient alkene hydrogenation over a magnetically recoverable and recyclable Fe3O4@GO nanocatalyst using hydrazine hydrate as the hydrogen source. Chem. Commun., 50(81), 12095-12097. doi:10.1039/c4cc04770bTrandafir, M.-M., Florea, M., Neaţu, F., Primo, A., Parvulescu, V. I., & García, H. (2016). Graphene from Alginate Pyrolysis as a Metal-Free Catalyst for Hydrogenation of Nitro Compounds. ChemSusChem, 9(13), 1565-1569. doi:10.1002/cssc.201600197Primo, A., Neatu, F., Florea, M., Parvulescu, V., & Garcia, H. (2014). Graphenes in the absence of metals as carbocatalysts for selective acetylene hydrogenation and alkene hydrogenation. Nature Communications, 5(1). doi:10.1038/ncomms6291Furst, A., Berlo, R. C., & Hooton, S. (1965). Hydrazine as a Reducing Agent for Organic Compounds (Catalytic Hydrazine Reductions). Chemical Reviews, 65(1), 51-68. doi:10.1021/cr60233a002Shi, Q., Lu, R., Lu, L., Fu, X., & Zhao, D. (2007). Efficient Reduction of Nitroarenes over Nickel-Iron Mixed Oxide Catalyst Prepared from a Nickel-Iron Hydrotalcite Precursor. Advanced Synthesis & Catalysis, 349(11-12), 1877-1881. doi:10.1002/adsc.200700070Li, H., Li, F., & Frett, B. (2014). Selective Reduction of Halogenated Nitroarenes with Hydrazine Hydrate in the Presence of Pd/C. Synlett, 25(10), 1403-1408. doi:10.1055/s-0033-1339025Wu, S., Wen, G., Schlögl, R., & Su, D. S. (2015). Carbon nanotubes oxidized by a green method as efficient metal-free catalysts for nitroarene reduction. Physical Chemistry Chemical Physics, 17(3), 1567-1571. doi:10.1039/c4cp04658gLin, Y., Wu, S., Shi, W., Zhang, B., Wang, J., Kim, Y. A., … Su, D. S. (2015). Efficient and highly selective boron-doped carbon materials-catalyzed reduction of nitroarenes. Chemical Communications, 51(66), 13086-13089. doi:10.1039/c5cc01963jWu, S., Wen, G., Liu, X., Zhong, B., & Su, D. S. (2014). Model Molecules with Oxygenated Groups Catalyze the Reduction of Nitrobenzene: Insight into Carbocatalysis. ChemCatChem, 6(6), 1558-1561. doi:10.1002/cctc.201402070Primo, A., Forneli, A., Corma, A., & García, H. (2012). From Biomass Wastes to Highly Efficient CO2Adsorbents: Graphitisation of Chitosan and Alginate Biopolymers. ChemSusChem, 5(11), 2207-2214. doi:10.1002/cssc.201200366Dhakshinamoorthy, A., Primo, A., Concepcion, P., Alvaro, M., & Garcia, H. (2013). Doped Graphene as a Metal-Free Carbocatalyst for the Selective Aerobic Oxidation of Benzylic Hydrocarbons, Cyclooctane and Styrene. Chemistry - A European Journal, 19(23), 7547-7554. doi:10.1002/chem.201300653Dhakshinamoorthy, A., Latorre-Sanchez, M., Asiri, A. M., Primo, A., & Garcia, H. (2015). Sulphur-doped graphene as metal-free carbocatalysts for the solventless aerobic oxidation of styrenes. Catalysis Communications, 65, 10-13. doi:10.1016/j.catcom.2015.02.018Ernzerhof, M., & Scuseria, G. E. (1999). Assessment of the Perdew–Burke–Ernzerhof exchange-correlation functional. The Journal of Chemical Physics, 110(11), 5029-5036. doi:10.1063/1.478401Adamo, C., & Barone, V. (1999). Toward reliable density functional methods without adjustable parameters: The PBE0 model. The Journal of Chemical Physics, 110(13), 6158-6170. doi:10.1063/1.478522Zhao, Y., & Truhlar, D. G. (2008). Density Functionals with Broad Applicability in Chemistry. Accounts of Chemical Research, 41(2), 157-167. doi:10.1021/ar700111aZhao, Y., Schultz, N. E., & Truhlar, D. G. (2006). Design of Density Functionals by Combining the Method of Constraint Satisfaction with Parametrization for Thermochemistry, Thermochemical Kinetics, and Noncovalent Interactions. Journal of Chemical Theory and Computation, 2(2), 364-382. doi:10.1021/ct0502763Hummers, W. S., & Offeman, R. E. (1958). Preparation of Graphitic Oxide. Journal of the American Chemical Society, 80(6), 1339-1339. doi:10.1021/ja01539a017Primo, A., Atienzar, P., Sanchez, E., Delgado, J. M., & García, H. (2012). From biomass wastes to large-area, high-quality, N-doped graphene: catalyst-free carbonization of chitosan coatings on arbitrary substrates. Chemical Communications, 48(74), 9254. doi:10.1039/c2cc34978gEsteve-Adell, I., Crapart, B., Primo, A., Serp, P., & Garcia, H. (2017). Aqueous phase reforming of glycerol using doped graphenes as metal-free catalysts. Green Chemistry, 19(13), 3061-3068. doi:10.1039/c7gc01058cDreyer, D. R., Park, S., Bielawski, C. W., & Ruoff, R. S. (2010). The chemistry of graphene oxide. Chem. Soc. Rev., 39(1), 228-240. doi:10.1039/b917103gMurray, A. T., & Surendranath, Y. (2017). Reversing the Native Aerobic Oxidation Reactivity of Graphitic Carbon: Heterogeneous Metal-Free Alkene Hydrogenation. ACS Catalysis, 7(5), 3307-3312. doi:10.1021/acscatal.7b00395Su, C., & Loh, K. P. (2012). Carbocatalysts: Graphene Oxide and Its Derivatives. Accounts of Chemical Research, 46(10), 2275-2285. doi:10.1021/ar300118vDeng, D., Novoselov, K. S., Fu, Q., Zheng, N., Tian, Z., & Bao, X. (2016). Catalysis with two-dimensional materials and their heterostructures. Nature Nanotechnology, 11(3), 218-230. doi:10.1038/nnano.2015.340Navalon, S., Dhakshinamoorthy, A., Alvaro, M., Antonietti, M., & García, H. (2017). Active sites on graphene-based materials as metal-free catalysts. Chemical Society Reviews, 46(15), 4501-4529. doi:10.1039/c7cs00156hD. J. Pasto , R. T.Taylor , D. J.Pasto and R. T.Taylor , Organic Reactions , John Wiley & Sons, Inc. , Hoboken, NJ, USA , 1991 , pp. 91–155Serna, P., & Corma, A. (2015). Transforming Nano Metal Nonselective Particulates into Chemoselective Catalysts for Hydrogenation of Substituted Nitrobenzenes. ACS Catalysis, 5(12), 7114-7121. doi:10.1021/acscatal.5b01846Banerjee, S., Balasanthiran, V., Koodali, R. T., & Sereda, G. A. (2010). Pd-MCM-48: a novel recyclable heterogeneous catalyst for chemo- and regioselective hydrogenation of olefins and coupling reactions. Organic & Biomolecular Chemistry, 8(19), 4316. doi:10.1039/c0ob00183jMonguchi, Y., Marumoto, T., Ichikawa, T., Miyake, Y., Nagae, Y., Yoshida, M., … Sajiki, H. (2015). Unique Chemoselective Hydrogenation using a Palladium Catalyst Immobilized on Ceramic. ChemCatChem, 7(14), 2155-2160. doi:10.1002/cctc.201500193Perosa, A., Tundo, P., & Zinovyev, S. (2002). Mild catalytic multiphase hydrogenolysis of benzyl ethers. Green Chemistry, 4(5), 492-494. doi:10.1039/b206838aSalonen, L. M., Ellermann, M., & Diederich, F. (2011). Aromatic Rings in Chemical and Biological Recognition: Energetics and Structures. Angewandte Chemie International Edition, 50(21), 4808-4842. doi:10.1002/anie.201007560Ratnayake, W. M. N., Grossert, J. S., & Ackman, R. G. (1990). Studies on the mechanism of the hydrazine reduction reaction: Applications to selected monoethylenic, diethylenic and triethylenic fatty acids ofcis configurations. Journal of the American Oil Chemists’ Society, 67(12), 940-946. doi:10.1007/bf0254185

    An Improved Synthesis of BrettPhos- and RockPhos-Type Biarylphosphine Ligands

    Get PDF
    Improved processes for the preparation of biphenyl-based phosphine ligands t-BuBrettPhos, RockPhos, and BrettPhos are presented. The new methods, featuring the use of Grignard reagents and catalytic amounts of copper, are superior to the previous methods, which require the use of tert-butyllithium and stoichiometric amounts of copper. Specifically, the use of less dangerous reagents provides a safer process, while the use of catalytic amounts of copper allows for the isolation of pure products in high yield. These improvements are particularly significant for the large-scale preparation of these ligands.National Institutes of Health (U.S.) (GM46059)Astellas USA Foundatio

    Copper-Mediated Amidation of Heterocyclic and Aromatic C−H Bonds

    Get PDF
    A copper-mediated aerobic coupling reaction enables direct amidation of heterocycles or aromatics having weakly acidic C−H bonds with a variety of nitrogen nucleophiles. These reactions provide efficient access to many biologically important skeletons, including ones with the potential to serve as inhibitors of HMTs.Chemistry and Chemical Biolog

    パラジウム炭素を触媒とした檜山クロスカップリング反応

    Get PDF
    檜山クロスカップリング反応は、フッ化物塩や塩基により活性化された有機ケイ素化合物と有機ハライド、あるいは有機ハライド等価体とのパラジウム(Pd)を触媒とした交差縮合反応である。本反応の基質である有機ケイ素化合物は毒性が低く、またグリニャール試薬などの求核剤と異なり空気中安定で取り扱いやすい。また、反応後に副生するケイ素化合物は、燃焼により無害な二酸化ケイ素に変換・処理されるため、檜山カップリングは医薬品を始めとした機能性物質の量産化反応に適している。従来法では均一系Pd 触媒を使用し、ゼロ価Pd の安定・活性化のためにリガンドが添加されるが、生成物中への残存や混入は避けることができず除去工程が別途必要となる。一方、不均一系Pd 触媒はPd が担体に保持されており化学的に安定であることから、均一系Pd 触媒を使用した際に生じる処理工程の回避が期待される。我々は接触水素化反応における汎用不均一系触媒であるパラジウム炭素(Pd/C)に着目し「Pd/C による檜山クロスカップリング反応」の開発並びにPd/C を触媒とした「リガンドを全く使用しない檜山クロスカップリング反応」の開発に成功した。特に後者はリガンドの添加を全く必要とせず、汎用されているPd/C を極微量使用するだけで効率良く進行する点で、操作性とコストに優れておりプロセス化学的適用が期待される。The Hiyama cross-coupling reaction, a palladium-catalyzed carbon–carbon bond formation between organosilanes andorganohalides or their equivalents, has been popularized as a useful synthetic method to construct unsymmetrical biphenyls asstructural components of various functional materials. The use of organosilanes as organometallic compounds, which was initiallyexplored by Hiyama, is one of the most attractive approaches, since organosilanes are easy to handle and environmentally friendlydue to their air-stability and low toxicity. Hiyama coupling has generally been achieved by the combined use of a homogeneouspalladium catalyst and a phosphine ligand. Recently, the development of heterogeneously palladium-catalyzed cross-couplingreactions has attracted significant attention from both environmental and economical points of view, since the catalysts can be readilyrecovered from the reaction mixture. Efficient methods are demonstrated for the palladium on carbon (Pd/C)-catalyzed Hiyamacross-coupling reactions and the first ligand-free Pd/C-catalyzed Hiyama cross-coupling reaction between a variety of aryl halidesand aryltriethoxysilanes
    corecore