12 research outputs found

    Wall stresses of early remodeled pulmonary autografts

    No full text
    ObjectiveThe Ross procedure is an excellent option for children or young adults who need aortic valve replacement because it can restore survival to that of the normal aged-matched population. However, autograft remodeling can lead to aneurysmal formation and reoperation, and the biomechanics of this process is unknown. This study investigated postoperative autograft remodeling after the Ross procedure by examining patient-specific autograft wall stresses.MethodsPatients who have undergone the Ross procedure who had intraoperative pulmonary root and aortic specimens collected were recruited. Patient-specific models (n = 16) were developed using patient-specific material property and their corresponding geometry from cine magnetic resonance imaging at 1-year follow-up. Autograft Â± Dacron for aneurysm repair and ascending aortic geometries were reconstructed to develop patient-specific finite element models, which incorporated material properties and wall thickness experimentally measured from biaxial stretching. A multiplicative approach was used to account for prestress geometry from in vivo magnetic resonance imaging. Pressure loading to systemic pressure (120/80) was performed using LS-DYNA software (LSTC Inc, Livermore, Calif).ResultsAt systole, first principal stresses were 809 kPa (25%-75% interquartile range, 691-1219 kPa), 567 kPa (485-675 kPa), 637 kPa (555-755 kPa), and 382 kPa (334-413 kPa) at the autograft sinotubular junction, sinuses, annulus, and ascending aorta, respectively. Second principal stresses were 360 kPa (310-426 kPa), 355 kPa (320-394 kPa), 272 kPa (252-319 kPa), and 184 kPa (147-222 kPa) at the autograft sinotubular junction, sinuses, annulus, and ascending aorta, respectively. Mean autograft diameters were 29.9 Â± 2.7 mm, 38.3 Â± 5.3 mm, and 26.6 Â± 4.0 mm at the sinotubular junction, sinuses, and annulus, respectively.ConclusionsPeak first principal stresses were mainly located at the sinotubular junction, particularly when Dacron reinforcement was used. Patient-specific simulations lay the foundation for predicting autograft dilatation in the future after understanding biomechanical behavior during long-term follow-up

    Hyperventilation-induced heart rate response as a potential marker for cardiovascular disease.

    Get PDF
    An increase of heart rate to physical or mental stress reflects the ability of the autonomous nervous system and the heart to respond adequately. Hyperventilation is a user-controlled breathing maneuver that has a significant impact on coronary function and hemodynamics. Thus, we aimed to investigate if the heart rate response to hyperventilation (HRRHV) can provide clinically useful information. A pooled analysis of the HRRHV after 60 s of hyperventilation was conducted in 282 participants including healthy controls; patients with heart failure (HF); coronary artery disease (CAD); a combination of both; or patients suspected of CAD but with a normal angiogram. Hyperventilation significantly increased heart rate in all groups, although healthy controls aged 55 years and older (15 ± 9 bpm) had a larger HRRHV than each of the disease groups (HF: 6 ± 6, CAD: 8 ± 8, CAD+/HF+: 6 ± 4, and CAD-/HF-: 8 ± 6 bpm, p < 0.001). No significant differences were found between disease groups. The HRRHV may serve as an easily measurable additional marker of cardiovascular health. Future studies should test its diagnostic potential as a simple, inexpensive pre-screening test to improve patient selection for other diagnostic exams
    corecore