80 research outputs found

    Locating and Dating Land Cover Change Events in the Renosterveld, a Critically Endangered Shrubland Ecosystem

    Get PDF
    Land cover change is the leading cause of global biodiversity decline. New satellite platforms allow for monitoring of habitats in increasingly fine detail, but most applications have been limited to forested ecosystems. I demonstrate the potential for detailed mapping and accurate dating of land cover change events in a highly biodiverse, Critically Endangered, shrubland ecosystem—the Renosterveld of South Africa. Using supervised classification of Sentinel 2 data, and subsequent manual verification with very high resolution imagery, I locate all conversion of Renosterveld to non-natural land cover between 2016 and 2020. Land cover change events are further assigned dates using high temporal frequency data from Planet labs. A total area of 478.6 hectares of Renosterveld loss was observed over this period, accounting for 0.72% of the remaining natural vegetation in the region. In total, 50% of change events were dated to within two weeks of their actual occurrence, and 87% to within two months. The Renosterveld loss identified here is almost entirely attributable to conversion of natural vegetation to cropland through ploughing. Change often preceded the planting and harvesting seasons of rainfed annual grains. These results show the potential for new satellite platforms to accurately map land cover change in non-forest ecosystems, and detect change within days of its occurrence. There is potential to use this and similar datasets to automate the process of change detection and monitor change continuously

    Continuous Land Cover Change Detection in a Critically Endangered Shrubland Ecosystem Using Neural Networks

    Get PDF
    Existing efforts to continuously monitor land cover change using satellite image time series have mostly focused on forested ecosystems in the tropics and the Northern Hemisphere. The notable difference in spectral reflectance that occurs following deforestation allows land cover change to be detected with relative accuracy. Less progress has been made in detecting change in low productivity or disturbance-prone vegetation such as grasslands and shrublands where natural dynamics can be difficult to distinguish from habitat loss. Renosterveld is a hyperdiverse, critically endangered shrubland ecosystem in South Africa with less than 5–10% of its original extent remaining in small, highly fragmented patches. I demonstrate that classification of satellite image time series using neural networks can accurately detect the transformation of Renosterveld within a few days of its occurrence and that trained models are suitable for operational continuous monitoring. A dataset of precisely dated vegetation change events between 2016 and 2021 was obtained from daily, high resolution Planet Labs satellite data. This dataset was then used to train 1D convolutional neural networks and Transformers to continuously detect land cover change events in time series of vegetation activity from Sentinel 2 satellite data. The best model correctly identified 89% of land cover change events at the pixel-level, achieving a f-score of 0.93, a 79% improvement over the f-score of 0.52 achieved using a method designed for forested ecosystems based on trend analysis. Models have been deployed to operational use and are producing updated detections of habitat loss every 10 days. There is great potential for continuous monitoring of habitat loss in non-forest ecosystems with complex natural dynamics. A key limiting step is the development of accurately dated datasets of land cover change events with which to train machine-learning classifiers

    The demographic impacts of browsing on woody plants in savannas : from individual branches to whole populations

    Get PDF
    Includes bibliographical references (p. 121-131).Browsing ungulates can potentially have drastic impacts on vegetation patterns. This is particularly true in African savannas where many large browsers persist at high densities. Most of the theory and models outlining mechanisms of impact on plants and predicting responses are framed in terms of biomass impacts and responses. However, for trees in African savannas, fitness is more closely linked to height than above ground biomass. I evaluate the demographic impacts of browsing, making explicit contrasts with impacts on biomass. The results highlight under- explored intrinsic aspects of plants and browsers that determine the degree of browser impact on plant demography, aspects that have been under-explored due to an emphasis on biomass responses, and provide novel methods to measure and evaluate large-scale browser impacts, which have proved difficult before

    An Integrated TCGA Pan-Cancer Clinical Data Resource to Drive High-Quality Survival Outcome Analytics

    Get PDF
    For a decade, The Cancer Genome Atlas (TCGA) program collected clinicopathologic annotation data along with multi-platform molecular profiles of more than 11,000 human tumors across 33 different cancer types. TCGA clinical data contain key features representing the democratized nature of the data collection process. To ensure proper use of this large clinical dataset associated with genomic features, we developed a standardized dataset named the TCGA Pan-Cancer Clinical Data Resource (TCGA-CDR), which includes four major clinical outcome endpoints. In addition to detailing major challenges and statistical limitations encountered during the effort of integrating the acquired clinical data, we present a summary that includes endpoint usage recommendations for each cancer type. These TCGA-CDR findings appear to be consistent with cancer genomics studies independent of the TCGA effort and provide opportunities for investigating cancer biology using clinical correlates at an unprecedented scale. Analysis of clinicopathologic annotations for over 11,000 cancer patients in the TCGA program leads to the generation of TCGA Clinical Data Resource, which provides recommendations of clinical outcome endpoint usage for 33 cancer types

    Genomic, Pathway Network, and Immunologic Features Distinguishing Squamous Carcinomas

    Get PDF
    This integrated, multiplatform PanCancer Atlas study co-mapped and identified distinguishing molecular features of squamous cell carcinomas (SCCs) from five sites associated with smokin

    Pan-Cancer Analysis of lncRNA Regulation Supports Their Targeting of Cancer Genes in Each Tumor Context

    Get PDF
    Long noncoding RNAs (lncRNAs) are commonly dys-regulated in tumors, but only a handful are known toplay pathophysiological roles in cancer. We inferredlncRNAs that dysregulate cancer pathways, onco-genes, and tumor suppressors (cancer genes) bymodeling their effects on the activity of transcriptionfactors, RNA-binding proteins, and microRNAs in5,185 TCGA tumors and 1,019 ENCODE assays.Our predictions included hundreds of candidateonco- and tumor-suppressor lncRNAs (cancerlncRNAs) whose somatic alterations account for thedysregulation of dozens of cancer genes and path-ways in each of 14 tumor contexts. To demonstrateproof of concept, we showed that perturbations tar-geting OIP5-AS1 (an inferred tumor suppressor) andTUG1 and WT1-AS (inferred onco-lncRNAs) dysre-gulated cancer genes and altered proliferation ofbreast and gynecologic cancer cells. Our analysis in-dicates that, although most lncRNAs are dysregu-lated in a tumor-specific manner, some, includingOIP5-AS1, TUG1, NEAT1, MEG3, and TSIX, synergis-tically dysregulate cancer pathways in multiple tumorcontexts

    Spatial Organization and Molecular Correlation of Tumor-Infiltrating Lymphocytes Using Deep Learning on Pathology Images

    Get PDF
    Beyond sample curation and basic pathologic characterization, the digitized H&E-stained images of TCGA samples remain underutilized. To highlight this resource, we present mappings of tumorinfiltrating lymphocytes (TILs) based on H&E images from 13 TCGA tumor types. These TIL maps are derived through computational staining using a convolutional neural network trained to classify patches of images. Affinity propagation revealed local spatial structure in TIL patterns and correlation with overall survival. TIL map structural patterns were grouped using standard histopathological parameters. These patterns are enriched in particular T cell subpopulations derived from molecular measures. TIL densities and spatial structure were differentially enriched among tumor types, immune subtypes, and tumor molecular subtypes, implying that spatial infiltrate state could reflect particular tumor cell aberration states. Obtaining spatial lymphocytic patterns linked to the rich genomic characterization of TCGA samples demonstrates one use for the TCGA image archives with insights into the tumor-immune microenvironment

    Pan-cancer Alterations of the MYC Oncogene and Its Proximal Network across the Cancer Genome Atlas

    Get PDF
    Although theMYConcogene has been implicated incancer, a systematic assessment of alterations ofMYC, related transcription factors, and co-regulatoryproteins, forming the proximal MYC network (PMN),across human cancers is lacking. Using computa-tional approaches, we define genomic and proteo-mic features associated with MYC and the PMNacross the 33 cancers of The Cancer Genome Atlas.Pan-cancer, 28% of all samples had at least one ofthe MYC paralogs amplified. In contrast, the MYCantagonists MGA and MNT were the most frequentlymutated or deleted members, proposing a roleas tumor suppressors.MYCalterations were mutu-ally exclusive withPIK3CA,PTEN,APC,orBRAFalterations, suggesting that MYC is a distinct onco-genic driver. Expression analysis revealed MYC-associated pathways in tumor subtypes, such asimmune response and growth factor signaling; chro-matin, translation, and DNA replication/repair wereconserved pan-cancer. This analysis reveals insightsinto MYC biology and is a reference for biomarkersand therapeutics for cancers with alterations ofMYC or the PMN

    Driver Fusions and Their Implications in the Development and Treatment of Human Cancers.

    Get PDF
    Gene fusions represent an important class of somatic alterations in cancer. We systematically investigated fusions in 9,624 tumors across 33 cancer types using multiple fusion calling tools. We identified a total of 25,664 fusions, with a 63% validation rate. Integration of gene expression, copy number, and fusion annotation data revealed that fusions involving oncogenes tend to exhibit increased expression, whereas fusions involving tumor suppressors have the opposite effect. For fusions involving kinases, we found 1,275 with an intact kinase domain, the proportion of which varied significantly across cancer types. Our study suggests that fusions drive the development of 16.5% of cancer cases and function as the sole driver in more than 1% of them. Finally, we identified druggable fusions involving genes such as TMPRSS2, RET, FGFR3, ALK, and ESR1 in 6.0% of cases, and we predicted immunogenic peptides, suggesting that fusions may provide leads for targeted drug and immune therapy

    Integrated Genomic Analysis of the Ubiquitin Pathway across Cancer Types

    Get PDF
    Protein ubiquitination is a dynamic and reversibleprocess of adding single ubiquitin molecules orvarious ubiquitin chains to target proteins. Here,using multidimensional omic data of 9,125 tumorsamples across 33 cancer types from The CancerGenome Atlas, we perform comprehensive molecu-lar characterization of 929 ubiquitin-related genesand 95 deubiquitinase genes. Among them, we sys-tematically identify top somatic driver candidates,including mutatedFBXW7with cancer-type-specificpatterns and amplifiedMDM2showing a mutuallyexclusive pattern withBRAFmutations. Ubiquitinpathway genes tend to be upregulated in cancermediated by diverse mechanisms. By integratingpan-cancer multiomic data, we identify a group oftumor samples that exhibit worse prognosis. Thesesamples are consistently associated with the upre-gulation of cell-cycle and DNA repair pathways, char-acterized by mutatedTP53,MYC/TERTamplifica-tion, andAPC/PTENdeletion. Our analysishighlights the importance of the ubiquitin pathwayin cancer development and lays a foundation fordeveloping relevant therapeutic strategies
    • …
    corecore