120 research outputs found
Anthropogenic radionuclides in the water column and a sediment core from the Alboran Sea: application to radiometric dating and reconstruction of historical water column radionuclide concentrations
Global fallout is the main source of anthropogenic radionuclides in the Mediterranean Sea. This work presents 137Cs, 239+240Pu and 241Am concentrations in the water column in the southwest Alboran Sea, which was sampled in December 1999. A sediment core was taken at 800 m depth in the area (35°47′ N, 04°48′ W). 210Pb, 226Ra, 137Cs and 239+240Pu specific activities were measured at multiple depths in the core for dating purposes. 137Cs and 239+240Pu profiles did not show defined peaks that could be used as time markers, and they extended up to depths for which the 210Pb-based constant rate of supply (CRS) dating model provided inconsistent dates. These profiles can be useful to test dating models, understood as particular solutions of a general advection–diffusion problem, if the time series of radionuclide inputs into the sediment is provided. Thus, historical records of depth-averaged 137Cs and 239+240Pu concentrations in water, and their corresponding fluxes into the sediment, were reconstructed. A simple water-column model was used for this purpose, involving atmospheric fallout, measured distribution coefficient (k d) values, and a first-estimate of sedimentation rates. A dating model of constant mixing with constant sedimentation rate was applied successfully to three independent records (unsupported 210Pb, 137Cs and 239+240Pu), and provided the objective determination of mixing parameters and mass sedimentation rate. These results provide some insight into the fate of atmospheric inputs to this marine environment and, particularly, into the contribution from the Chernobyl accident.International Atomic Energy Agency Research Project RAF/7/00
Approche analytique des éléments chimiques et éléments traces métalliques dans les eaux et sédiments des salines et de la lagune de Oualidia (Observation de la microfloresiliceuse)
Le procédé des analyses par spectrométrie ICP est une pratique qui date de très peu dans les biotopes marins de la région des Doukkala. L’approche participative de la présente note étant d’établir une diagnose pour s’approcher de l’état des lieux vis-à-vis de certains éléments enregistrés dans les eaux et sédiments adjacents du littoral Doukkali, et d’examiner particulièrement sa microflore siliceuse qui serait potentiellement exposée à des perturbations liées à certaines concentrations inadéquates de tels éléments. Une compagne de prélèvement et d’analyses par spectrométrie ICP couplée à des observations microscopiques de la microflore ont été effectuées en juillet 2008
The 2nd competition on counter measures to 2D face spoofing attacks
Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. I. Chingovska, J. Yang, Z. Lei, D. Yi, S. Z. Li, O. Kahm, C. Glaser, N. Damer, A. Kuijper, A. Nouak, J. Komulainen, T. Pereira, S. Gupta, S. Khandelwal, S. Bansal, A. Rai, T. Krishna, D. Goyal, M.-A. Waris, H. Zhang, I. Ahmad, S. Kiranyaz, M. Gabbouj, R. Tronci, M. Pili, N. Sirena, F. Roli, J. Galbally, J. Fiérrez, A. Pinto, H. Pedrini, W. S. Schwartz, A. Rocha, A. Anjos, S. Marcel, "The 2nd competition on counter measures to 2D face spoofing attacks" in International Conference on Biometrics (ICB), Madrid (Spain), 2013, 1-6As a crucial security problem, anti-spoofing in biometrics, and particularly for the face modality, has achieved great progress in the recent years. Still, new threats arrive inform of better, more realistic and more sophisticated spoofing attacks. The objective of the 2nd Competition on Counter Measures to 2D Face Spoofing Attacks is to challenge researchers to create counter measures effectively detecting a variety of attacks. The submitted propositions are evaluated on the Replay-Attack database and the achieved results are presented in this paper.The authors would like to thank the Swiss Innovation Agency (CTI Project Replay) and the FP7 European TABULA RASA Project4 (257289) for their financial support
Male Oxidative Stress Infertility (MOSI): Proposed Terminology and Clinical Practice Guidelines for Management of Idiopathic Male Infertility
Despite advances in the field of male reproductive health, idiopathic male infertility, in which a man has altered semen
characteristics without an identifiable cause and there is no female factor infertility, remains a challenging condition to diagnose
and manage. Increasing evidence suggests that oxidative stress (OS) plays an independent role in the etiology of male
infertility, with 30% to 80% of infertile men having elevated seminal reactive oxygen species levels. OS can negatively affect
fertility via a number of pathways, including interference with capacitation and possible damage to sperm membrane and
DNA, which may impair the sperm’s potential to fertilize an egg and develop into a healthy embryo. Adequate evaluation of
male reproductive potential should therefore include an assessment of sperm OS. We propose the term Male Oxidative Stress
Infertility, or MOSI, as a novel descriptor for infertile men with abnormal semen characteristics and OS, including many
patients who were previously classified as having idiopathic male infertility. Oxidation-reduction potential (ORP) can be a
useful clinical biomarker for the classification of MOSI, as it takes into account the levels of both oxidants and reductants
(antioxidants). Current treatment protocols for OS, including the use of antioxidants, are not evidence-based and have the
potential for complications and increased healthcare-related expenditures. Utilizing an easy, reproducible, and cost-effective
test to measure ORP may provide a more targeted, reliable approach for administering antioxidant therapy while minimizing
the risk of antioxidant overdose. With the increasing awareness and understanding of MOSI as a distinct male infertility diagnosis,
future research endeavors can facilitate the development of evidence-based treatments that target its underlying cause
Novel genes and sex differences in COVID-19 severity
[EN] Here, we describe the results of a genome-wide study conducted in 11 939 coronavirus disease 2019 (COVID-19) positive cases with an extensive clinical information that were recruited from 34 hospitals across Spain (SCOURGE consortium). In sex-disaggregated genome-wide association studies for COVID-19 hospitalization, genome-wide significance (P < 5 × 10−8) was crossed for variants in 3p21.31 and 21q22.11 loci only among males (P = 1.3 × 10−22 and P = 8.1 × 10−12, respectively), and for variants in 9q21.32 near TLE1 only among females (P = 4.4 × 10−8). In a second phase, results were combined with an independent Spanish cohort (1598 COVID-19 cases and 1068 population controls), revealing in the overall analysis two novel risk loci in 9p13.3 and 19q13.12, with fine-mapping prioritized variants functionally associated with AQP3 (P = 2.7 × 10−8) and ARHGAP33 (P = 1.3 × 10−8), respectively. The meta-analysis of both phases with four European studies stratified by sex from the Host Genetics Initiative (HGI) confirmed the association of the 3p21.31 and 21q22.11 loci predominantly in males and replicated a recently reported variant in 11p13 (ELF5, P = 4.1 × 10−8). Six of the COVID-19 HGI discovered loci were replicated and an HGI-based genetic risk score predicted the severity strata in SCOURGE. We also found more SNP-heritability and larger heritability differences by age (<60 or ≥60 years) among males than among females. Parallel genome-wide screening of inbreeding depression in SCOURGE also showed an effect of homozygosity in COVID-19 hospitalization and severity and this effect was stronger among older males. In summary, new candidate genes for COVID-19 severity and evidence supporting genetic disparities among sexes are provided.S
Clonal chromosomal mosaicism and loss of chromosome Y in elderly men increase vulnerability for SARS-CoV-2
The pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2, COVID-19) had an estimated overall case fatality ratio of 1.38% (pre-vaccination), being 53% higher in males and increasing exponentially with age. Among 9578 individuals diagnosed with COVID-19 in the SCOURGE study, we found 133 cases (1.42%) with detectable clonal mosaicism for chromosome alterations (mCA) and 226 males (5.08%) with acquired loss of chromosome Y (LOY). Individuals with clonal mosaic events (mCA and/or LOY) showed a 54% increase in the risk of COVID-19 lethality. LOY is associated with transcriptomic biomarkers of immune dysfunction, pro-coagulation activity and cardiovascular risk. Interferon-induced genes involved in the initial immune response to SARS-CoV-2 are also down-regulated in LOY. Thus, mCA and LOY underlie at least part of the sex-biased severity and mortality of COVID-19 in aging patients. Given its potential therapeutic and prognostic relevance, evaluation of clonal mosaicism should be implemented as biomarker of COVID-19 severity in elderly people. Among 9578 individuals diagnosed with COVID-19 in the SCOURGE study, individuals with clonal mosaic events (clonal mosaicism for chromosome alterations and/or loss of chromosome Y) showed an increased risk of COVID-19 lethality
Updated international tuberous sclerosis complex diagnostic criteria and surveillance and management recommendations
Background
Tuberous sclerosis complex (TSC) is an autosomal dominant genetic disease affecting multiple body systems with wide variability in presentation. In 2013, Pediatric Neurology published articles outlining updated diagnostic criteria and recommendations for surveillance and management of disease manifestations. Advances in knowledge and approvals of new therapies necessitated a revision of those criteria and recommendations.
Methods
Chairs and working group cochairs from the 2012 International TSC Consensus Group were invited to meet face-to-face over two days at the 2018 World TSC Conference on July 25 and 26 in Dallas, TX, USA. Before the meeting, working group cochairs worked with group members via e-mail and telephone to (1) review TSC literature since the 2013 publication, (2) confirm or amend prior recommendations, and (3) provide new recommendations as required.
Results
Only two changes were made to clinical diagnostic criteria reported in 2013: “multiple cortical tubers and/or radial migration lines” replaced the more general term “cortical dysplasias,” and sclerotic bone lesions were reinstated as a minor criterion. Genetic diagnostic criteria were reaffirmed, including highlighting recent findings that some individuals with TSC are genetically mosaic for variants in TSC1 or TSC2. Changes to surveillance and management criteria largely reflected increased emphasis on early screening for electroencephalographic abnormalities, enhanced surveillance and management of TSC-associated neuropsychiatric disorders, and new medication approvals.
Conclusions
Updated TSC diagnostic criteria and surveillance and management recommendations presented here should provide an improved framework for optimal care of those living with TSC and their families
- …