114 research outputs found

    The politics of the teaching of reading

    Get PDF
    Historically, political debates have broken out over how to teach reading in primary schools and infant classrooms. These debates and “reading wars” have often resulted from public concerns and media reportage of a fall in reading standards. They also reflect the importance placed on learning to read by parents, teachers, employers, and politicians. Public and media-driven controversies over the teaching of reading have resulted in intense public and professional debates over which specific methods and materials to use with beginning readers and with children who have reading difficulties. Recently, such debates have led to a renewed emphasis on reading proficiency and “standardized” approaches to teaching reading and engaging with literacy. The universal acceptance of the importance of learning to read has also led to vested interests in specific methods, reading programmes, and early literacy assessments amongst professional, business, commercial, and parental lobbying groups. This article traces these debates and the resulting growing support for a quantitative reductionist approach to early-reading programmes

    Parity-Violating Electron Scattering from 4He and the Strange Electric Form Factor of the Nucleon

    Full text link
    We have measured the parity-violating electroweak asymmetry in the elastic scattering of polarized electrons from ^4He at an average scattering angle = 5.7 degrees and a four-momentum transfer Q^2 = 0.091 GeV^2. From these data, for the first time, the strange electric form factor of the nucleon G^s_E can be isolated. The measured asymmetry of A_PV = (6.72 +/- 0.84 (stat) +/- 0.21 (syst) parts per million yields a value of G^s_E = -0.038 +/- 0.042 (stat) +/- 0.010 (syst), consistent with zero

    Reduction in the levels of CoQ biosynthetic proteins is related to an increase in lifespan without evidence of hepatic mitohormesis

    Get PDF
    Mitohormesis is an adaptive response induced by a mild mitochondrial stress that promotes longevity and metabolic health in different organisms. This mechanism has been proposed as the cause of the increase in the survival in Coq7+/− (Mclk1+/−) mice, which show hepatic reduction of COQ7, early mitochondrial dysfunction and increased oxidative stress. Our study shows that the lack of COQ9 in Coq9Q95X mice triggers the reduction of COQ7, COQ6 and COQ5, which results in an increase in life expectancy. However, our results reveal that the hepatic CoQ levels are not decreased and, therefore, neither mitochondrial dysfunction or increased oxidative stress are observed in liver of Coq9Q95X mice. These data point out the tissue specific differences in CoQ biosynthesis. Moreover, our results suggest that the effect of reduced levels of COQ7 on the increased survival in Coq9Q95X mice may be due to mitochondrial mechanisms in non-liver tissues or to other unknown mechanisms.This work was supported by grants from Ministerio de EconomĂ­a Competitividad, Spain, and the ERDF (Grant Number SAF2015-65786-R), from the Consejería de Economía, Innovación, Ciencia y Empleo, Junta de Andalucía (grant number P10-CTS-6133) and from the University of Granada (grant reference “UNETE”, UCE-PP2017-06). AHG is a “FPU fellow” from the Ministerio de Educación Cultura y Deporte, Spain. MLS was a predoctoral fellow from the Consejería de Economía, Innovación, Ciencia y Empleo, Junta de Andalucía. LCL was supported by the “Ramón y Cajal” National Programme, Ministerio de Economía y Competitividad, Spain (RYC-2011-07643)

    What drives sound symbolism? Different acoustic cues underlie sound-size and sound-shape mappings

    Get PDF
    Sound symbolism refers to the non-arbitrary mappings that exist between phonetic properties of speech sounds and their meaning. Despite there being an extensive literature on the topic, the acoustic features and psychological mechanisms that give rise to sound symbolism are not, as yet, altogether clear. The present study was designed to investigate whether different sets of acoustic cues predict size and shape symbolism, respectively. In two experiments, participants judged whether a given consonant-vowel speech sound was large or small, round or angular, using a size or shape scale. Visual size judgments were predicted by vowel formant F1 in combination with F2, and by vowel duration. Visual shape judgments were, however, predicted by formants F2 and F3. Size and shape symbolism were thus not induced by a common mechanism, but rather were distinctly affected by acoustic properties of speech sounds. These findings portray sound symbolism as a process that is not based merely on broad categorical contrasts, such as round/unround and front/back vowels. Rather, individuals seem to base their sound-symbolic judgments on specific sets of acoustic cues, extracted from speech sounds, which vary across judgment dimensions

    Testing a Short Nuclear Marker for Inferring Staphylinid Beetle Diversity in an African Tropical Rain Forest

    Get PDF
    The use of DNA based methods for assessing biodiversity has become increasingly common during the last years. Especially in speciose biomes as tropical rain forests and/or in hyperdiverse or understudied taxa they may efficiently complement morphological approaches. The most successful molecular approach in this field is DNA barcoding based on cytochrome c oxidase I (COI) marker, but other markers are used as well. Whereas most studies aim at identifying or describing species, there are only few attempts to use DNA markers for inventorying all animal species found in environmental samples to describe variations of biodiversity patterns.In this study, an analysis of the nuclear D3 region of the 28S rRNA gene to delimit species-like units is compared to results based on distinction of morphospecies. Data derived from both approaches are used to assess diversity and composition of staphylinid beetle communities of a Guineo-Congolian rain forest in Kenya. Beetles were collected with a standardized sampling design across six transects in primary and secondary forests using pitfall traps. Sequences could be obtained of 99% of all individuals. In total, 76 molecular operational taxonomic units (MOTUs) were found in contrast to 70 discernible morphospecies. Despite this difference both approaches revealed highly similar biodiversity patterns, with species richness being equal in primary and secondary forests, but with divergent species communities in different habitats. The D3-MOTU approach proved to be an efficient tool for biodiversity analyses.Our data illustrate that the use of MOTUs as a proxy for species can provide an alternative to morphospecies identification for the analysis of changes in community structure of hyperdiverse insect taxa. The efficient amplification of the D3-marker and the ability of the D3-MOTUs to reveal similar biodiversity patterns as analyses of morphospecies recommend its use in future molecular studies on biodiversity

    Food supplements increase adult tarsus length, but not growth rate, in an island population of house sparrows (Passer domesticus)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Variation in food supply during early development can influence growth rate and body size in many species. However, whilst the detrimental effects of food restriction have often been studied in natural populations, how young individuals respond to an artificial increase in food supply is rarely investigated. Here, we investigated both the short-term and long-term effects of providing house sparrow chicks with food supplements during a key period of growth and development and assessed whether providing food supplements had any persistent effect upon adult size (measured here as tarsus length).</p> <p>Results</p> <p>Male nestlings tended to reach higher mass asymptotes than females. Furthermore, brood size was negatively associated with a chick's asymptotic mass. However, providing food supplements had no influence upon the growth rate or the asymptotic mass of chicks. Adults that received food supplements as chicks were larger, in terms of their tarsus length, than adults that did not receive extra food as chicks. In addition, the variation in tarsus length amongst adult males that were given food supplements as chicks was significantly less than the variance observed amongst males that did not receive food supplements.</p> <p>Conclusions</p> <p>Our results demonstrate that the food supply chicks experience during a critical developmental period can have a permanent effect upon their adult phenotype. Furthermore, providing extra food to chicks resulted in sex-biased variance in a size-related trait amongst adults, which shows that the degree of sexual size dimorphism can be affected by the environment experienced during growth.</p

    Regulation of mitophagy by the NSL complex underlies genetic risk for Parkinson's disease at 16q11.2 and MAPT H1 loci.

    Get PDF
    Parkinson's disease is a common incurable neurodegenerative disease. The identification of genetic variants via genome-wide association studies has considerably advanced our understanding of the Parkinson's disease genetic risk. Understanding the functional significance of the risk loci is now a critical step towards translating these genetic advances into an enhanced biological understanding of the disease. Impaired mitophagy is a key causative pathway in familial Parkinson's disease, but its relevance to idiopathic Parkinson's disease is unclear. We used a mitophagy screening assay to evaluate the functional significance of risk genes identified through genome-wide association studies. We identified two new regulators of PINK1-dependent mitophagy initiation, KAT8 and KANSL1, previously shown to modulate lysine acetylation. These findings suggest PINK1-mitophagy is a contributing factor to idiopathic Parkinson's disease. KANSL1 is located on chromosome 17q21 where the risk associated gene has long been considered to be MAPT. While our data does not exclude a possible association between the MAPT gene and Parkinson's disease, it provides strong evidence that KANSL1 plays a crucial role in the disease. Finally, these results enrich our understanding of physiological events regulating mitophagy and establish a novel pathway for drug targeting in neurodegeneration

    Polymerase delta-interacting protein 38 (PDIP38) modulates the stability and activity of the mitochondrial AAA+ protease CLPXP

    Get PDF
    Over a decade ago Polymerase ÎŽ interacting protein of 38 kDa (PDIP38) was proposed to play a role in DNA repair. Since this time, both the physiological function and subcellular location of PDIP38 has remained ambiguous and our present understanding of PDIP38 function has been hampered by a lack of detailed biochemical and structural studies. Here we show, that human PDIP38 is directed to the mitochondrion in a membrane potential dependent manner, where it resides in the matrix compartment, together with its partner protein CLPX. Our structural analysis revealed that PDIP38 is composed of two conserved domains separated by an α/ÎČ linker region. The N-terminal (YccV-like) domain of PDIP38 forms an SH3-like ÎČ-barrel, which interacts specifically with CLPX, via the adaptor docking loop within the N-terminal Zinc binding domain of CLPX. In contrast, the C-terminal (DUF525) domain forms an immunoglobin-like ÎČ-sandwich fold, which contains a highly conserved putative substrate binding pocket. Importantly, PDIP38 modulates the substrate specificity of CLPX and protects CLPX from LONM-mediated degradation, which stabilises the cellular levels of CLPX. Collectively, our findings shed new light on the mechanism and function of mitochondrial PDIP38, demonstrating that PDIP38 is a bona fide adaptor protein for the mitochondrial protease, CLPXP

    Using Evolutionary Conserved Modules in Gene Networks as a Strategy to Leverage High Throughput Gene Expression Queries

    Get PDF
    Background: Large-scale gene expression studies have not yielded the expected insight into genetic networks that control complex processes. These anticipated discoveries have been limited not by technology, but by a lack of effective strategies to investigate the data in a manageable and meaningful way. Previous work suggests that using a pre-determined seednetwork of gene relationships to query large-scale expression datasets is an effective way to generate candidate genes for further study and network expansion or enrichment. Based on the evolutionary conservation of gene relationships, we test the hypothesis that a seed network derived from studies of retinal cell determination in the fly, Drosophila melanogaster, will be an effective way to identify novel candidate genes for their role in mouse retinal development. Methodology/Principal Findings: Our results demonstrate that a number of gene relationships regulating retinal cell differentiation in the fly are identifiable as pairwise correlations between genes from developing mouse retina. In addition, we demonstrate that our extracted seed-network of correlated mouse genes is an effective tool for querying datasets and provides a context to generate hypotheses. Our query identified 46 genes correlated with our extracted seed-network members. Approximately 54% of these candidates had been previously linked to the developing brain and 33% had been previously linked to the developing retina. Five of six candidate genes investigated further were validated by experiments examining spatial and temporal protein expression in the developing retina. Conclusions/Significance: We present an effective strategy for pursuing a systems biology approach that utilizes an evolutionary comparative framework between two model organisms, fly and mouse. Future implementation of this strategy will be useful to determine the extent of network conservation, not just gene conservation, between species and will facilitate the use of prior biological knowledge to develop rational systems-based hypotheses

    The era of reference genomes in conservation genomics

    Get PDF
    Progress in genome sequencing now enables the large-scale generation of reference genomes. Various international initiatives aim to generate reference genomes representing global biodiversity. These genomes provide unique insights into genomic diversity and architecture, thereby enabling comprehensive analyses of population and functional genomics, and are expected to revolutionize conservation genomics
    • 

    corecore