22 research outputs found

    A rare outburst from the stealthy BeXRB system Swift J0549.7-6812

    Full text link
    Swift J0549.7-6812 is an Be/X-ray binary system (BeXRB) in the Large Magellanic Cloud (LMC) exhibiting a 6s pulse period. Like many such systems the variable X-ray emission is believed to be driven by the underlying behaviour of the mass donor Be star. In this paper we report on X-ray observations of the brightest known outburst from this system which reached a luminosity of 8 x 10^37 erg/s. These observations are supported by contemporaneous optical photometric observations, the first reported optical spectrum, as well as several years of historical data from OGLE and GAIA. The latter strongly suggest a binary period of 46.1d. All the observational data indicate that Swift J0549.7-6812 is a system that spends the vast majority of its time in X-ray quiescence, or even switched off completely. This suggests that occasional observations may easily miss it, and many similar systems, and thereby underestimate the massive star evolution numbers for the LMC.Comment: 7 pages, 11 figure

    Optical and X-ray study of the peculiar high mass X-ray binary XMMU J010331.7-730144

    Get PDF
    For a long time XMMU J010331.7-730144 was proposed as a high-mass X-ray binary candidate based on its X-ray properties, however, its optical behaviour was unclear - in particular previous observations did not reveal key Balmer emission lines. In this paper we report on optical and X-ray variability of the system. XMMU J010331.7-730144 has been monitored with the Optical Gravitational Lensing Experiment (OGLE) in the I and V −bands for the past 9 years where it has shown extremely large amplitude outbursts separated by long periods of low-level flux. During its most recent optical outburst we obtained spectra with the Southern Africa Large Telescope (SALT) where, for the first time, the Hα line is seen in emission, confirming the Be nature of the optical companion. The OGLE colour-magnitude diagrams also exhibit a distinct loop which is explained by changes in mass-loss from the Be star and mass outflow in its disc. In the X-rays, XMMU J010331.7-730144 has been monitored by the Neil Gehrels Swift Observatory through the S-CUBED programme. The X-ray flux throughout the monitoring campaign shows relatively low values for a typical Be/X-ray binary system. We show, from the analysis of the optical data, that the variability is due to the Be disc density and opacity changing rather than its physical extent as a result of efficient truncation by the NS. The relatively low X-ray flux can then be explained by the neutron star normally accreting matter at a low rate due to the small radial extent of the Be disc

    SRG/eROSITA-triggered XMM-Newton observations of three Be/X-ray binaries in the LMC: Discovery of X-ray pulsations

    Full text link
    Using data from eROSITA, the soft X-ray instrument aboard Spectrum-Roentgen-Gamma (SRG), we report the discovery of two new hard transients, eRASSU J050810.4-660653 and eRASSt J044811.1-691318, in the Large Magellanic Cloud. We also report the detection of the Be/X-ray binary RX J0501.6-7034 in a bright state. We initiated follow-up observations to investigate the nature of the new transients and to search for X-ray pulsations coming from RX J0501.6-7034. We analysed the X-ray spectra and light curves from our XMM-Newton observations, obtained optical spectra using the South African Large Telescope to look for Balmer emission lines and utilised the archival data from the Optical Gravitational Lensing Experiment (OGLE) for the long-term monitoring of the optical counterparts. We find X-ray pulsations for eRASSU J050810.4-660653, RX J0501.6-7034, and eRASSt J044811.1-691318 of 40.6 s, 17.3 s, and 784 s, respectively. The Halpha emission lines with equivalent widths of -10.4 A (eRASSU J050810.4-660653) and -43.9 A (eRASSt J044811.1-691318) were measured, characteristic for a circumstellar disc around Be stars. The OGLE I- and V-band light curves of all three systems exhibit strong variability. A regular pattern of deep dips in the light curves of RX J0501.6-7034 suggests an orbital period of ~451 days. We identify the two new hard eROSITA transients eRASSU J050810.4-660653 and eRASSt J044811.1-691318 and the known Be/X-ray binary RX J0501.6-7034 as Be/X-ray binary pulsars.Comment: Accepted for publication in Astronomy & Astrophysic

    A soft and transient ultraluminous X-ray source with 6-h modulation in the NGC 300 galaxy

    Full text link
    We investigate the nature of CXOU J005440.5-374320 (J0054), a peculiar bright (\sim4×10394\times10^{39} erg/s) and soft X-ray transient in the spiral galaxy NGC 300 with a 6-hour periodic flux modulation that was detected in a 2014 Chandra observation. Subsequent observations with Chandra and XMM-Newton, as well as a large observational campaign of NGC 300 and its sources performed with the Swift Neil Gehrels Observatory, showed that this source exhibits recurrent flaring activity: four other outbursts were detected across \sim8 years of monitoring. Using data from the Swift/UVOT archive and from the XMM-Newton/OM and Gaia catalogues, we noted the source is likely associated with a bright blue optical/ultraviolet counterpart. This prompted us to perform follow-up observations with the Southern African Large Telescope in December 2019. With the multi-wavelength information at hand, we discuss several possibilities for the nature of J0054. Although none is able to account for the full range of the observed peculiar features, we found that the two most promising scenarios are a stellar-mass compact object in a binary system with a Wolf-Rayet star companion, or the recurrent tidal stripping of a stellar object trapped in a system with an intermediate-mass (1000\sim1000 MM_\odot) black hole.Comment: 13 pages, 11 Figures, 3 Tables (the Table in appendix A will be available in the published version). Accepted for publication in A&

    Discovery of a magnetar candidate X-ray pulsar in the Large Magellanic Cloud

    Full text link
    During a systematic search for new X-ray pulsators in the XMM-Newton archive, we discovered a high amplitude (PF86%PF\simeq86\%) periodic (P7.25sP\simeq7.25\,\mathrm{s}) modulation in the X-ray flux of 4XMM J045626.3-694723 (J0456 hereafter), a previously unclassified source in the Large Magellanic Cloud (LMC). The period of the modulation is strongly suggestive of a spinning neutron star (NS). The source was detected only during one out of six observations in 2018-2022. Based on an absorbed power-law spectral model with photon slope of Γ1.9\Gamma\simeq 1.9, we derive a 0.3-10 keV luminosity of LX2.7×1034L_\mathrm{X}\simeq2.7\times10^{34} erg cm2^{-2} s1^{-1} for a distance of 50 kpc. The X-ray properties of J0456 are at variance with those of variable LMC X-ray pulsars hosted in high-mass X-ray binary systems with a Be-star companion. Based on SALT spectroscopic observations of the only optical object that matches the X-ray uncertainty region, we cannot completely rule out that J0456 is a NS accreting from a late-type (G8-K3) star, an as-yet-unobserved binary evolutionary outcome in the MCs. We show that the source properties are in better agreement with those of magnetars. J0456 may thus be second known magnetar in the LMC after SGR 0526-66.Comment: 9 pages, 6 figures, 1 table. Accepted for publication in MNRA

    Optical spectroscopic and photometric classification of the X-ray transient EP240309a (EP J115415.8−501810) as an intermediate polar

    Get PDF
    We report on optical follow-up observations of an X-ray source initially detected by the Einstein Probe mission. Our investigations categorize the source as an intermediate polar, a class of magnetic cataclysmic variables, exhibiting an orbital period of 3.7614(4) h and a white dwarf spin period of 3.97 min. The orbital period was identified through TESS observations, while our high-speed photometric data, obtained using the 1.9m and Lesedi 1.0m telescopes at the South African Astronomical Observatory, revealed both the spin and beat periods. Additionally, we present orbitally phase-resolved spectroscopic observations using the 1.9m telescope, specifically centred on the H β emission line, which reveal two emission components that exhibit Doppler variations throughout the orbital cycle

    Simultaneous X-ray and radio observations of the transitional millisecond pulsar candidate CXOU J110926.4-650224: The discovery of a variable radio counterpart

    Get PDF
    We present the results of simultaneous observations of the transitional millisecond pulsar (tMSP) candidate CXOU J110926.4-650224 with the XMM-Newton satellite and the MeerKAT telescope. The source was found at an average X-ray luminosity of LX 7 × 1033 erg s-1 over the 0.3-10 keV band (assuming a distance of 4 kpc) and displayed a peculiar variability pattern in the X-ray emission, switching between high, low and flaring modes on timescales of tens of seconds. A radio counterpart was detected at a significance of 7.9σ with an average flux density of 33 μJy at 1.28 GHz. It showed variability over the course of hours and emitted a 10-min long flare just a few minutes after a brief sequence of multiple X-ray flares. No clear evidence for a significant correlated or anticorrelated variability pattern was found between the X-ray and radio emissions over timescales of tens of minutes and longer. CXOU J110926.4-650224 was undetected at higher radio frequencies in subsequent observations performed with the Australia Telescope Compact Array, when the source was still in the same X-ray sub-luminous state observed before, down to a flux density upper limit of 15 μJy at 7.25 GHz (at 3σ). We compare the radio emission properties of CXOU J110926.4-650224 with those observed in known and candidate tMSPs and discuss physical scenarios that may account for its persistent and flaring radio emissions

    On the relationship between circumstellar disc size and X-ray outbursts in Be/X-ray binaries

    Get PDF
    We present long-term Hα monitoring results of five Be/X-ray binaries to study the Be disc size variations and their influence on type II (giant) X-ray outbursts. The work is done in the context of the viscous decretion disc model which predicts that Be discs in binary systems are truncated by resonant torques induced by the neutron star in its orbit. Our observations show that type II outbursts are not correlated (nor anticorrelated) with the disc size, as they are seen to occur both at relatively small and large Be disc radii. We discuss these observations in context of alternate interpretation of Be disc behaviour, such as precession, elongation and density effects, and with cognisance of the limitations of our disc size estimates

    The triple-peaked afterglow of GRB 210731A from X-ray to radio frequencies

    Full text link
    GRB 210731A was a long-duration gamma-ray burst discovered by the Burst Alert Telescope (BAT) aboard the Neil Gehrels Swift observatory. Swift triggered the wide-field, robotic MeerLICHT optical telescope in Sutherland; it began observing the BAT error circle 286 seconds after the Swift trigger and discovered the optical afterglow of GRB 210731A in its first 60-second q-band exposure. Multi-colour observations of the afterglow with MeerLICHT revealed a light curve that showed three peaks of similar brightness within the first four hours. We present the results of our follow-up campaign and interpret our observations in the framework of the synchrotron forward shock model. We performed temporal and spectral fits to determine the spectral regime and external medium density profile, and performed detailed multi-wavelength theoretical modelling of the afterglow following the last optical peak at 0.2 days to determine the intrinsic blast wave parameters. We find a preference for a stellar wind density profile consistent with a massive star origin, while our theoretical modelling results in fairly typical shock microphysics parameters. Based on the energy released in gamma-rays and the kinetic energy in the blast wave, we determine a low radiative efficiency of ~0.02. The first peak in the optical light curve is likely the onset of the afterglow. We find that energy injection into the forward shock offers the simplest explanation for the subsequent light curve evolution, and that the blast wave kinetic energy increasing by a factor of ~1000 from the first peak to the last peak is indicative of substantial energy injection. Our highest-likelihood theoretical model overpredicts the 1.4 GHz flux by a factor of approximately three with respect to our upper limits, possibly implying a population of thermal electrons within the shocked region.Comment: 20 pages, 8 figures, accepted for publication in Astronomy & Astrophysic
    corecore