12 research outputs found

    A robust deep learning approach for tomato plant leaf disease localization and classification

    Get PDF
    Tomato plants' disease detection and classification at the earliest stage can save the farmers from expensive crop sprays and can assist in increasing the food quantity. Although, extensive work has been presented by the researcher for the tomato plant disease classification, however, the timely localization and identification of various tomato leaf diseases is a complex job as a consequence of the huge similarity among the healthy and affected portion of plant leaves. Furthermore, the low contrast information between the background and foreground of the suspected sample has further complicated the plant leaf disease detection process. To deal with the aforementioned challenges, we have presented a robust deep learning (DL)-based approach namely ResNet-34-based Faster-RCNN for tomato plant leaf disease classification. The proposed method includes three basic steps. Firstly, we generate the annotations of the suspected images to specify the region of interest (RoI). In the next step, we have introduced ResNet-34 along with Convolutional Block Attention Module (CBAM) as a feature extractor module of Faster-RCNN to extract the deep key points. Finally, the calculated features are utilized for the Faster-RCNN model training to locate and categorize the numerous tomato plant leaf anomalies. We tested the presented work on an accessible standard database, the PlantVillage Kaggle dataset. More specifically, we have obtained the mAP and accuracy values of 0.981, and 99.97% respectively along with the test time of 0.23 s. Both qualitative and quantitative results confirm that the presented solution is robust to the detection of plant leaf disease and can replace the manual systems. Moreover, the proposed method shows a low-cost solution to tomato leaf disease classification which is robust to several image transformations like the variations in the size, color, and orientation of the leaf diseased portion. Furthermore, the framework can locate the affected plant leaves under the occurrence of blurring, noise, chrominance, and brightness variations. We have confirmed through the reported results that our approach is robust to several tomato leaf diseases classification under the varying image capturing conditions. In the future, we plan to extend our approach to apply it to other parts of plants as well

    A Novel Deep Learning Method for Recognition and Classification of Brain Tumors from MRI images

    Get PDF
    A brain tumor is an abnormal growth in brain cells that causes damage to various blood vessels and nerves in the human body. An earlier and accurate diagnosis of the brain tumor is of foremost important to avoid future complications. Precise segmentation of brain tumors provides a basis for surgical planning and treatment to doctors. Manual detection using MRI images is computationally complex in cases where the survival of the patient is dependent on timely treatment, and the performance relies on domain expertise. Therefore, computerized detection of tumors is still a challenging task due to significant variations in their location and structure, i.e., irregular shapes and ambiguous boundaries. In this study, we propose a custom Mask Region-based Convolution neural network (Mask RCNN) with a densenet-41 backbone architecture that is trained via transfer learning for precise classification and segmentation of brain tumors. Our method is evaluated on two different benchmark datasets using various quantitative measures. Comparative results show that the custom Mask-RCNN can more precisely detect tumor locations using bounding boxes and return segmentation masks to provide exact tumor regions. Our proposed model achieved an accuracy of 96.3% and 98.34% for segmentation and classification respectively, demonstrating enhanced robustness compared to state-of-the-art approaches

    Detection of Diabetic Eye Disease from Retinal Images Using a Deep Learning Based CenterNet Model

    Get PDF
    Diabetic retinopathy (DR) is an eye disease that alters the blood vessels of a person suffering from diabetes. Diabetic macular edema (DME) occurs when DR affects the macula, which causes fluid accumulation in the macula. Efficient screening systems require experts to manually analyze images to recognize diseases. However, due to the challenging nature of the screening method and lack of trained human resources, devising effective screening-oriented treatment is an expensive task. Automated systems are trying to cope with these challenges; however, these methods do not generalize well to multiple diseases and real-world scenarios. To solve the aforementioned issues, we propose a new method comprising two main steps. The first involves dataset preparation and feature extraction and the other relates to improving a custom deep learning based CenterNet model trained for eye disease classification. Initially, we generate annotations for suspected samples to locate the precise region of interest, while the other part of the proposed solution trains the Center Net model over annotated images. Specifically, we use DenseNet-100 as a feature extraction method on which the one-stage detector, CenterNet, is employed to localize and classify the disease lesions. We evaluated our method over challenging datasets, namely, APTOS-2019 and IDRiD, and attained average accuracy of 97.93% and 98.10%, respectively. We also performed cross-dataset validation with benchmark EYEPACS and Diaretdb1 datasets. Both qualitative and quantitative results demonstrate that our proposed approach outperforms state-of-the-art methods due to more effective localization power of CenterNet, as it can easily recognize small lesions and deal with over-fitted training data. Our proposed framework is proficient in correctly locating and classifying disease lesions. In comparison to existing DR and DME classification approaches, our method can extract representative key points from low-intensity and noisy images and accurately classify them. Hence our approach can play an important role in automated detection and recognition of DR and DME lesions

    Analysis of Brain MRI Images Using Improved CornerNet Approach

    No full text
    The brain tumor is a deadly disease that is caused by the abnormal growth of brain cells, which affects the human blood cells and nerves. Timely and precise detection of brain tumors is an important task to avoid complex and painful treatment procedures, as it can assist doctors in surgical planning. Manual brain tumor detection is a time-consuming activity and highly dependent on the availability of area experts. Therefore, it is a need of the hour to design accurate automated systems for the detection and classification of various types of brain tumors. However, the exact localization and categorization of brain tumors is a challenging job due to extensive variations in their size, position, and structure. To deal with the challenges, we have presented a novel approach, namely, DenseNet-41-based CornerNet framework. The proposed solution comprises three steps. Initially, we develop annotations to locate the exact region of interest. In the second step, a custom CornerNet with DenseNet-41 as a base network is introduced to extract the deep features from the suspected samples. In the last step, the one-stage detector CornerNet is employed to locate and classify several brain tumors. To evaluate the proposed method, we have utilized two databases, namely, the Figshare and Brain MRI datasets, and attained an average accuracy of 98.8% and 98.5%, respectively. Both qualitative and quantitative analysis show that our approach is more proficient and consistent with detecting and classifying various types of brain tumors than other latest techniques

    Intensivist and COVID-19 in the United States of America: a narrative review of clinical roles, current workforce, and future direction.

    No full text
    COVID-19 continues to spread across borders and has proven to be a challenge for the existing healthcare system. The demand for intensivists has dramatically increased in the United States, in the backdrop of an expected lack of intensivists in many States even before the pandemic. One proposal has been to organize multidisciplinary teams functioning under one intensivist, as this approach would make use of the existing healthcare force and lessen the burden on intensivists. Another recommendation is the adaptation of Tele-ICUs, which have demonstrated constructive outcomes in the past. Moreover, ensuring the provision of all types of personal protective equipment, adequate testing and, other provisions such as mental health support, financial incentives for intensivists should be prioritized. More intensivists should be trained for the future, for which better institutional policies are essential
    corecore