53 research outputs found

    Electronic control of the spin-wave damping in a magnetic insulator

    Get PDF
    It is demonstrated that the decay time of spin-wave modes existing in a magnetic insulator can be reduced or enhanced by injecting an in-plane dc current, IdcI_\text{dc}, in an adjacent normal metal with strong spin-orbit interaction. The demonstration rests upon the measurement of the ferromagnetic resonance linewidth as a function of IdcI_\text{dc} in a 5~μ\mum diameter YIG(20nm){\textbar}Pt(7nm) disk using a magnetic resonance force microscope (MRFM). Complete compensation of the damping of the fundamental mode is obtained for a current density of ∼3⋅1011A.m−2\sim 3 \cdot 10^{11}\text{A.m}^{-2}, in agreement with theoretical predictions. At this critical threshold the MRFM detects a small change of static magnetization, a behavior consistent with the onset of an auto-oscillation regime.Comment: 6 pages 4 figure

    Inverse Spin Hall Effect in nanometer-thick YIG/Pt system

    Full text link
    High quality nanometer-thick (20 nm, 7 nm and 4 nm) epitaxial YIG films have been grown on GGG substrates using pulsed laser deposition. The Gilbert damping coefficient for the 20 nm thick films is 2.3 x 10-4 which is the lowest value reported for sub-micrometric thick films. We demonstrate Inverse spin Hall effect (ISHE) detection of propagating spin waves using Pt. The amplitude and the lineshape of the ISHE voltage correlate well to the increase of the Gilbert damping when decreasing thickness of YIG. Spin Hall effect based loss-compensation experiments have been conducted but no change in the magnetization dynamics could be detected

    Full control of the spin-wave damping in a magnetic insulator using spin-orbit torque

    Get PDF
    © 2014 American Physical Society. It is demonstrated that the threshold current for damping compensation can be reached in a 5μm diameter YIG(20nm)|Pt(7nm) disk. The demonstration rests upon the measurement of the ferromagnetic resonance linewidth as a function of Idc using a magnetic resonance force microscope (MRFM). It is shown that the magnetic losses of spin-wave modes existing in the magnetic insulator can be reduced or enhanced by at least a factor of 5 depending on the polarity and intensity of an in-plane dc current Idc flowing through the adjacent normal metal with strong spin-orbit interaction. Complete compensation of the damping of the fundamental mode by spin-orbit torque is reached for a current density of ∼3×1011A·m-2, in agreement with theoretical predictions. At this critical threshold the MRFM detects a small change of static magnetization, a behavior consistent with the onset of an auto-oscillation regime

    A global phylogenomic analysis of the shiitake genus Lentinula

    Get PDF
    Lentinula is a broadly distributed group of fungi that contains the cultivated shiitake mushroom, L. edodes. We sequenced 24 genomes representing eight described species and several unnamed lineages of Lentinula from 15 countries on four continents. Lentinula comprises four major clades that arose in the Oligocene, three in the Americas and one in Asia–Australasia. To expand sampling of shiitake mushrooms, we assembled 60 genomes of L. edodes from China that were previously published as raw Illumina reads and added them to our dataset. Lentinula edodes sensu lato (s. lat.) contains three lineages that may warrant recognition as species, one including a single isolate from Nepal that is the sister group to the rest of L. edodes s. lat., a second with 20 cultivars and 12 wild isolates from China, Japan, Korea, and the Russian Far East, and a third with 28 wild isolates from China, Thailand, and Vietnam. Two additional lineages in China have arisen by hybridization among the second and third groups. Genes encoding cysteine sulfoxide lyase (lecsl) and γ-glutamyl transpeptidase (leggt), which are implicated in biosynthesis of the organosulfur flavor compound lenthionine, have diversified in Lentinula. Paralogs of both genes that are unique to Lentinula (lecsl 3 and leggt 5b) are coordinately up-regulated in fruiting bodies of L. edodes. The pangenome of L. edodes s. lat. contains 20,308 groups of orthologous genes, but only 6,438 orthogroups (32%) are shared among all strains, whereas 3,444 orthogroups (17%) are found only in wild populations, which should be targeted for conservation

    Risk Factors Associated with Adverse Fetal Outcomes in Pregnancies Affected by Coronavirus Disease 2019 (COVID-19): A Secondary Analysis of the WAPM study on COVID-19

    Get PDF
    To evaluate the strength of association between maternal and pregnancy characteristics and the risk of adverse perinatal outcomes in pregnancies with laboratory confirmed COVID-19. Secondary analysis of a multinational, cohort study on all consecutive pregnant women with laboratory-confirmed COVID-19 from February 1, 2020 to April 30, 2020 from 73 centers from 22 different countries. A confirmed case of COVID-19 was defined as a positive result on real-time reverse-transcriptase-polymerase-chain-reaction (RT-PCR) assay of nasal and pharyngeal swab specimens. The primary outcome was a composite adverse fetal outcome, defined as the presence of either abortion (pregnancy loss before 22 weeks of gestations), stillbirth (intrauterine fetal death after 22 weeks of gestation), neonatal death (death of a live-born infant within the first 28 days of life), and perinatal death (either stillbirth or neonatal death). Logistic regression analysis was performed to evaluate parameters independently associated with the primary outcome. Logistic regression was reported as odds ratio (OR) with 95% confidence interval (CI). Mean gestational age at diagnosis was 30.6\ub19.5 weeks, with 8.0% of women being diagnosed in the first, 22.2% in the second and 69.8% in the third trimester of pregnancy. There were six miscarriage (2.3%), six intrauterine device (IUD) (2.3) and 5 (2.0%) neonatal deaths, with an overall rate of perinatal death of 4.2% (11/265), thus resulting into 17 cases experiencing and 226 not experiencing composite adverse fetal outcome. Neither stillbirths nor neonatal deaths had congenital anomalies found at antenatal or postnatal evaluation. Furthermore, none of the cases experiencing IUD had signs of impending demise at arterial or venous Doppler. Neonatal deaths were all considered as prematurity-related adverse events. Of the 250 live-born neonates, one (0.4%) was found positive at RT-PCR pharyngeal swabs performed after delivery. The mother was tested positive during the third trimester of pregnancy. The newborn was asymptomatic and had negative RT-PCR test after 14 days of life. At logistic regression analysis, gestational age at diagnosis (OR: 0.85, 95% CI 0.8-0.9 per week increase; p<0.001), birthweight (OR: 1.17, 95% CI 1.09-1.12.7 per 100 g decrease; p=0.012) and maternal ventilatory support, including either need for oxygen or CPAP (OR: 4.12, 95% CI 2.3-7.9; p=0.001) were independently associated with composite adverse fetal outcome. Early gestational age at infection, maternal ventilatory supports and low birthweight are the main determinants of adverse perinatal outcomes in fetuses with maternal COVID-19 infection. Conversely, the risk of vertical transmission seems negligible

    Radical addition and H abstraction reactions in C

    No full text
    Context. Recent interstellar detections include a significant number of molecules containing vinyl (C2H3) and ethyl (C2H5) groups in their structure. For several of these molecules, there is no clear experimental or theoretical evidence that supports their formation from simpler precursors. Aims. We carried out a systematic search of viable reactions starting from closed-shell hydrocarbons containing two carbon atoms (ethane, C2H6; ethylene, C2H4; and acetylene, C2H2), with the goal of determining viable chemical routes for the formation of vinyl and ethyl molecules on top of interstellar dust grains. Methods. We used density functional theory calculations in combination with semiclassical instantem theory to derive the rate coefficients for the radical-neutral surface reactions. The effect of a surface was modeled through an implicit surface approach, profiting from the weak interaction between the considered hydrocarbons and the dust surfaces. Results. Our results show that both H and OH radicals are key in converting acetylene and ethylene into more complex radicals that are liable to continue reacting and to form interstellar complex organic molecules. The relevant reactions, for example OH additions, present rate constants above 101 s−1 that are likely competitive with OH diffusion on grains. Similarly, H atom addition to acetylene and ethylene is a very fast process, with rate constants above 104 s−1 in all cases, and is greatly enhanced by quantum tunneling. Hydrogen abstraction reactions are less relevant, but may play a role in specific cases involving the OH radical. Reactions with other radicals NH2 and CH3 are likely to have much less impact on the chemistry of ethyl- and vinyl-bearing molecules. Conclusions. The effective formation at low temperatures of four radicals (C2H3, C2H5, C2H2OH, and C2H4OH) through our proposed mechanism opens the gate for the formation of complex organic molecules, and indicates a potential prevalence of OH-bearing molecules on the grain. Following our suggested reaction pathway, we explain the formation of many of the newly detected molecules, and propose new molecules for detection. Our results reinforce the recent view on the importance of the OH radical in interstellar surface chemistry

    Binding energies and sticking coefficients of H

    No full text
    Context. Molecular hydrogen (H2) is the most abundant interstellar molecule and plays an important role in the chemistry and physics of the interstellar medium. The interaction of H2 with interstellar ices is relevant for several processes (e.g., nuclear spin conversion and chemical reactions on the surface of the ice). To model surface processes, quantities such as binding energies and sticking coefficients are required. Aims. We provide sticking coefficients and binding energies for the H2/CO system. These data are absent in the literature so far and could help modelers and experimentalists to draw conclusions on the H2/CO interaction in cold molecular clouds. Methods. Ab initio molecular dynamics simulations, in combination with neural network potentials, were employed in our simulations. Atomistic neural networks were trained against density functional theory calculations on model systems. We sampled a wide range of H2 internal energies and three surface temperatures. Results. Our results show that the binding energy for the H2/CO system is low on average, − 157 K for amorphous CO and −266 K for crystalline CO. This carries several implications for the rest of the work. H2 binding to crystalline CO is stronger by 109 K than to amorphous CO, while amorphous CO shows a wider H2 binding energy distribution. Sticking coefficients are never unity and vary strongly with surface temperature, but less so with ice phase, with values between 0.95 and 0.17. With the values of this study, between 17 and 25% of a beam of H2 molecules at room temperature would stick to the surface, depending on the temperature of the surface and the ice phase. Residence times vary by several orders of magnitude between crystalline and amorphous CO, with the latter showing residence times on the order of seconds at 5 K. H2 may diffuse before desorption in amorphous ices, which might help to accommodate it in deeper binding sites. Conclusions. Based on our results, a significant fraction of H2 molecules will stick on CO ice under experimental conditions, even more so under the harsh conditions of prestellar cores. However, with the low H2–CO binding energies, residence times of H2 on CO ice before desorption are too short to consider a significant population of H2 molecules on pure CO ices. Diffusion is possible in a time window before desorption, which might help accommodate H2 on deeper binding sites, which would increase residence times on the surface

    Isomers in interstellar environments – I. The case of Z- and E-cyanomethanimine

    No full text
    In this work, we present the results of our investigation into the chemistry of Z- and E-cyanomethanimine (HNCHCN), both of which are possible precursors to the nucleobase adenine. Ab initio quantum chemical calculations for a number of reactions with atomic hydrogen were carried out. We find that the reaction H + Z/E-HNCHCN leading both to H-addition as well as H2-abstraction proceed via similar short-range barriers with bimolecular rate coefficients on the order of ~10−17 cm3 s−1. These results were then incorporated into astrochemical models and used in simulations of the giant molecular cloud G+0.693. The calculated abundances obtained from these models were compared with previous observational data and found to be in good agreement, with a predicted [Z/E] ratio of ~3—somewhat smaller than the previously derived value of 6.1 ± 2.4. We find that the [Z/E] ratio in our simulations is due mostly to ion-molecule destruction rates driven by the different permanent dipoles of the two conformers. Based on these results, we propose a general rule-of-thumb for estimating the abundances of isomers in interstellar environments, which we call the "relative dipole principle.

    Reaction dynamics on amorphous solid water surfaces using interatomic machine-learned potentials

    No full text
    Context. Energy redistribution after a chemical reaction is one of the few mechanisms that can explain the diffusion and desorption of molecules which require more energy than the thermal energy available in quiescent molecular clouds (10 K). This energy distribution can be important in phosphorous hydrides, elusive yet fundamental molecules for interstellar prebiotic chemistry. Aims. Our goal with this study is to use state-of-the-art methods to determine the fate of the chemical energy in the simplest phosphorous hydride reaction. Methods. We studied the reaction dynamics of the P + H → PH reaction on amorphous solid water, a reaction of astrophysical interest, using ab initio molecular dynamics with atomic forces evaluated by a neural network interatomic potential. Results. We found that the exact nature of the initial phosphorous binding sites is less relevant for the energy dissipation process because the nascent PH molecule rapidly migrates to sites with higher binding energy after the reaction. Non-thermal diffusion and desorption after reaction were observed and occurred early in the dynamics, essentially decoupled from the dissipation of the chemical reaction energy. From an extensive sampling of on-site reactions, we constrained the average dissipated reaction energy within the simulation time (50 ps) to be between 50 and 70%. Most importantly, the fraction of translational energy acquired by the formed molecule was found to be mostly between 1 and 5%. Conclusions. Including these values, specifically for the test cases of 2% and 5% of translational energy conversion, in astrochemical models, reveals very low gas-phase abundances of PHx molecules and reflects that considering binding energy distributions is paramount to correctly merging microscopic and macroscopic modelling of non-thermal surface astrochemical processes. Finally, we found that PD molecules dissipate more of the reaction energy. This effect can be relevant for the deuterium fractionation and preferential distillation of molecules in the interstellar medium
    • …
    corecore