46 research outputs found

    A Search for FeH in Hot-Jupiter Atmospheres with High-Dispersion Spectroscopy

    Full text link
    Most of the molecules detected thus far in exoplanet atmospheres, such as water and CO, are present for a large range of pressures and temperatures. In contrast, metal hydrides exist in much more specific regimes of parameter space, and so can be used as probes of atmospheric conditions. Iron hydride (FeH) is a dominant source of opacity in low-mass stars and brown dwarfs, and evidence for its existence in exoplanets has recently been observed at low resolution. We performed a systematic search of archival CARMENES near-infrared data for signatures of FeH during transits of 12 exoplanets. These planets span a large range of equilibrium temperatures (600 Teq\lesssim T_{eq} \lesssim 4000K) and surface gravities (2.5 logg\lesssim \mathrm{log} g \lesssim 3.5). We did not find a statistically significant FeH signal in any of the atmospheres, but obtained potential low-confidence signals (SNR\sim3) in two planets, WASP-33b and MASCARA-2b. Previous modeling of exoplanet atmospheres indicate that the highest volume mixing ratios (VMRs) of 107^{-7} to 109^{-9} are expected for temperatures between 1800 and 3000K and log g3g \gtrsim3. The two planets for which we find low-confidence signals are in the regime where strong FeH absorption is expected. We performed injection and recovery tests for each planet and determined that FeH would be detected in every planet for VMRs 106\geq 10^{-6}, and could be detected in some planets for VMRs as low as 109.5^{-9.5}. Additional observations are necessary to conclusively detect FeH and assess its role in the temperature structures of hot Jupiter atmospheres.Comment: Accepted to AAS journal

    Detection of the Atmosphere of the 1.6 M ⊕ Exoplanet GJ 1132 b

    Get PDF
    Detecting the atmospheres of low-mass, low-temperature exoplanets is a high-priority goal on the path to ultimately detecting biosignatures in the atmospheres of habitable exoplanets. High-precision HST observations of several super-Earths with equilibrium temperatures below 1000 K have to date all resulted in featureless transmission spectra, which have been suggested to be due to high-altitude clouds. We report the detection of an atmospheric feature in the atmosphere of a 1.6 M{M}_{\oplus } transiting exoplanet, GJ 1132 b, with an equilibrium temperature of ~600 K and orbiting a nearby M dwarf. We present observations of nine transits of the planet obtained simultaneously in the griz and JHK passbands. We find an average radius of 1.43 ± 0.16 R{R}_{\oplus } for the planet, averaged over all the passbands, and a radius of 0.255 ± 0.023 R{R}_{\odot } for the star, both of which are significantly greater than previously found. The planet radius can be decomposed into a "surface radius" at ~1.375 R{R}_{\oplus } overlaid by atmospheric features that increase the observed radius in the z and K bands. The z-band radius is 4σ higher than the continuum, suggesting a strong detection of an atmosphere. We deploy a suite of tests to verify the reliability of the transmission spectrum, which are greatly helped by the existence of repeat observations. The large z-band transit depth indicates strong opacity from H2O and/or CH4 or a hitherto-unconsidered opacity. A surface radius of 1.375 ± 0.16 R{R}_{\oplus } allows for a wide range of interior compositions ranging from a nearly Earth-like rocky interior, with ~70% silicate and ~30% Fe, to a substantially H2O-rich water world

    Spitzer Reveals Evidence of Molecular Absorption in the Atmosphere of the Hot Neptune LTT 9979b

    Get PDF
    Non-rocky sub-jovian exoplanets in high irradiation environments are rare. LTT 9979b, also known as TESS Object of Interest (TOI) 193.01, is one of the few such planets discovered to date, and the first example of an ultra-hot Neptune. The planet's bulk density indicates that it has a substantial atmosphere, so to investigate its atmospheric composition and shed further light on its origin, we obtained {\it Spitzer} IRAC secondary eclipse observations of LTT 9979b at 3.6 and 4.5 μ\mum. We combined the {\it Spitzer} observations with a measurement of the secondary eclipse in the {\it TESS} bandpass. The resulting secondary eclipse spectrum strongly prefers a model that includes CO absorption over a blackbody spectrum, incidentally making LTT 9979b the first {\it TESS} exoplanet (and the first ultra-hot Neptune) with evidence of a spectral feature in its atmosphere. We did not find evidence of a thermal inversion, at odds with expectations based on the atmospheres of similarly-irradiated hot Jupiters. We also report a nominal dayside brightness temperature of 2305 ±\pm 141 K (based on the 3.6 μ\mum secondary eclipse measurement), and we constrained the planet's orbital eccentricity to e<0.01e < 0.01 at the 99.7 \% confidence level. Together with our analysis of LTT 9979b's thermal phase curves reported in a companion paper, our results set the stage for similar investigations of a larger sample of exoplanets discovered in the hot Neptune desert, investigations which are key to uncovering the origin of this population.Comment: 12 pages, 5 figures; accepted to ApJ Letter

    The Multiplanet System TOI-421*: A Warm Neptune and a Super Puffy Mini-Neptune Transiting a G9 V Star in a Visual Binary*

    Get PDF
    We report the discovery of a warm Neptune and a hot sub-Neptune transiting TOI-421 (BD-14 1137, TIC 94986319), a bright (V = 9.9) G9 dwarf star in a visual binary system observed by the Transiting Exoplanet Survey Satellite (TESS) space mission in Sectors 5 and 6. We performed ground-based follow-up observations—comprised of Las Cumbres Observatory Global Telescope transit photometry, NIRC2 adaptive optics imaging, and FIbre-fed Echellé Spectrograph, CORALIE, High Accuracy Radial velocity Planet Searcher, High Resolution Échelle Spectrometer, and Planet Finder Spectrograph high-precision Doppler measurements—and confirmed the planetary nature of the 16 day transiting candidate announced by the TESS team. We discovered an additional radial velocity signal with a period of five days induced by the presence of a second planet in the system, which we also found to transit its host star. We found that the inner mini-Neptune, TOI-421 b, has an orbital period of Pb = 5.19672 ± 0.00049 days, a mass of Mb = 7.17 ± 0.66 M⊕, and a radius of Rb = 2.680.18+0.19{2.68}_{-0.18}^{+0.19} R⊕, whereas the outer warm Neptune, TOI-421 c, has a period of Pc = 16.06819 ± 0.00035 days, a mass of Mc = 16.421.04+1.06{16.42}_{-1.04}^{+1.06} M⊕, a radius of Rc = 5.090.15+0.16{5.09}_{-0.15}^{+0.16} R⊕, and a density of ρc = 0.6850.072+0.080{0.685}_{-0.072}^{+0.080} g cm−3. With its characteristics, the outer planet (ρc = 0.6850.072+0.080{0.685}_{-0.072}^{+0.080} g cm−3) is placed in the intriguing class of the super-puffy mini-Neptunes. TOI-421 b and TOI-421 c are found to be well-suited for atmospheric characterization. Our atmospheric simulations predict significant Lyα transit absorption, due to strong hydrogen escape in both planets, as well as the presence of detectable CH4 in the atmosphere of TOI-421 c if equilibrium chemistry is assumed

    The JWST Early Release Science Program for Direct Observations of Exoplanetary Systems II: A 1 to 20 Micron Spectrum of the Planetary-Mass Companion VHS 1256-1257 b

    Get PDF
    We present the highest fidelity spectrum to date of a planetary-mass object. VHS 1256 b is a <<20 MJup_\mathrm{Jup} widely separated (\sim8\arcsec, a = 150 au), young, planetary-mass companion that shares photometric colors and spectroscopic features with the directly imaged exoplanets HR 8799 c, d, and e. As an L-to-T transition object, VHS 1256 b exists along the region of the color-magnitude diagram where substellar atmospheres transition from cloudy to clear. We observed VHS 1256~b with \textit{JWST}'s NIRSpec IFU and MIRI MRS modes for coverage from 1 μ\mum to 20 μ\mum at resolutions of \sim1,000 - 3,700. Water, methane, carbon monoxide, carbon dioxide, sodium, and potassium are observed in several portions of the \textit{JWST} spectrum based on comparisons from template brown dwarf spectra, molecular opacities, and atmospheric models. The spectral shape of VHS 1256 b is influenced by disequilibrium chemistry and clouds. We directly detect silicate clouds, the first such detection reported for a planetary-mass companion.Comment: Accepted ApJL Iterations of spectra reduced by the ERS team are hosted at this link: https://github.com/bemiles/JWST_VHS1256b_Reduction/tree/main/reduced_spectr

    The JWST Early Release Science Program for Direct Observations of Exoplanetary Systems IV: NIRISS Aperture Masking Interferometry Performance and Lessons Learned

    Full text link
    We present a performance analysis for the aperture masking interferometry (AMI) mode on board the James Webb Space Telescope Near Infrared Imager and Slitless Spectrograph (JWST/NIRISS). Thanks to self-calibrating observables, AMI accesses inner working angles down to and even within the classical diffraction limit. The scientific potential of this mode has recently been demonstrated by the Early Release Science (ERS) 1386 program with a deep search for close-in companions in the HIP 65426 exoplanetary system. As part of ERS 1386, we use the same dataset to explore the random, static, and calibration errors of NIRISS AMI observables. We compare the observed noise properties and achievable contrast to theoretical predictions. We explore possible sources of calibration errors, and show that differences in charge migration between the observations of HIP 65426 and point-spread function calibration stars can account for the achieved contrast curves. Lastly, we use self-calibration tests to demonstrate that with adequate calibration, NIRISS AMI can reach contrast levels of 910\sim9-10 mag. These tests lead us to observation planning recommendations and strongly motivate future studies aimed at producing sophisticated calibration strategies taking these systematic effects into account. This will unlock the unprecedented capabilities of JWST/NIRISS AMI, with sensitivity to significantly colder, lower mass exoplanets than ground-based setups at orbital separations inaccessible to JWST coronagraphy.Comment: 20 pages, 12 figures, submitted to AAS Journal

    The \textit{JWST} Early Release Science Program for Direct Observations of Exoplanetary Systems III: Aperture Masking Interferometric Observations of the star HIP\,65426 at 3.8μm\boldsymbol{3.8\,\rm{\mu m}}

    Full text link
    We present aperture masking interferometry (AMI) observations of the star HIP 65426 at 3.8μm3.8\,\rm{\mu m} as a part of the \textit{JWST} Direct Imaging Early Release Science (ERS) program obtained using the Near Infrared Imager and Slitless Spectrograph (NIRISS) instrument. This mode provides access to very small inner working angles (even separations slightly below the Michelson limit of 0.5λ/D{}0.5\lambda/D for an interferometer), which are inaccessible with the classical inner working angles of the \textit{JWST} coronagraphs. When combined with \textit{JWST}'s unprecedented infrared sensitivity, this mode has the potential to probe a new portion of parameter space across a wide array of astronomical observations. Using this mode, we are able to achieve a contrast of ΔmF380M7.8\Delta m_{F380M}{\sim }7.8\,mag relative to the host star at a separation of {\sim}0.07\arcsec but detect no additional companions interior to the known companion HIP\,65426\,b. Our observations thus rule out companions more massive than 10{-}12\,\rm{M\textsubscript{Jup}} at separations 1020au{\sim}10{-}20\,\rm{au} from HIP\,65426, a region out of reach of ground or space-based coronagraphic imaging. These observations confirm that the AMI mode on \textit{JWST} is sensitive to planetary mass companions orbiting at the water frost line, even for more distant stars at \sim100\,pc. This result will allow the planning and successful execution of future observations to probe the inner regions of nearby stellar systems, opening essentially unexplored parameter space.Comment: 15 pages, 9 figures, submitted to ApJ Letter

    VizieR Online Data Catalog: 51 Eri b SPHERE/IFS spectra & atmosphere models (Samland+, 2017)

    Get PDF
    One fits file for each spectrum of 51 Eridani b (SPHERE IFS-YJ, IFS-YH, Samland et al., 2017, this work; GPI-H band, Macintosh et al., 2015, Cat. J/other/Sci/350.64). The first extension of the file contains the spectrum used in the paper (fits-table). The second extension contains the correlation matrix for the uncertainty of the spectral points (fits-image). The petitCODE (a self-consistent 1d radiative-convective equilibrium code, see Molliere et al., 2015ApJ...813...47M, 2017A&A...600A..10M) atmospheric model grids (cloudy and clear) as used and described in Samland et al. 2017, this work, are provided as fits-files. The first extension contains the wavelength sampling of the model cube at a resolution of 1000 (same for all models). The second extension contains the table of all model parameter combinations (each row one model, columns represent parameters). The third extension contains the flattened model cube as 2D-fits image (index of row of table in 2nd ext. corresponds to index of model in 3rd extension). The header of the 3rd extension gives the dimensions of the model cube prior to flattening to make it easy to restore the non-flattened shape if necessary. Units and descriptions can always be found in the respective headers. (2 data files)
    corecore