633 research outputs found

    A baba

    Get PDF
    Debreczeni Városi Színház. Péntek, 1901. évi január hó 4-én.Debreceni Egyetem Egyetemi és Nemzeti Könyvtá

    Propionibacterium acnes inhibits FOXM1 and induces cell cycle alterations in human primary prostate cells

    Get PDF
    AbstractPropionibacterium acnes has been detected in diseased human prostate tissue, and cell culture experiments suggest that the bacterium can establish a low-grade inflammation. Here, we investigated its impact on human primary prostate epithelial cells. Microarray analysis confirmed the inflammation-inducing capability of P. acnes but also showed deregulation of genes involved in the cell cycle. qPCR experiments showed that viable P. acnes downregulates a master regulator of cell cycle progression, FOXM1. Flow cytometry experiments revealed that P. acnes increases the number of cells in S-phase. We tested the hypothesis that a P. acnes-produced berninamycin-like thiopeptide is responsible for this effect, since it is related to the FOXM1 inhibitor siomycin. The thiopeptide biosynthesis gene cluster was strongly expressed; it is present in subtype IB of P. acnes, but absent from type IA, which is most abundant on human skin. A knock-out mutant lacking the gene encoding the berninamycin-like peptide precursor was unable to downregulate FOXM1 and to halt the cell cycle. Our study reveals a novel host cell-interacting activity of P. acnes

    Silicon materials task of the low cost solar array project. Phase 3: Effect of impurities and processing on silicon solar cells

    Get PDF
    The 13th quarterly report of a study entitled an Investigation of the Effects of Impurities and Processing on Silicon Solar Cells is given. The objective of the program is to define the effects of impurities, various thermochemical processes and any impurity-process interactions on the performance of terrestrial silicon solar cells. The Phase 3 program effort falls in five areas: (1) cell processing studies; (2) completion of the data base and impurity-performance modeling for n-base cells; (3) extension of p-base studies to include contaminants likely to be introduced during silicon production, refining or crystal growth; (4) anisotropy effects; and (5) a preliminary study of the permanence of impurity effects in silicon solar cells. The quarterly activities for this report focus on tasks (1), (3) and (4)

    Mycofactocin Is Associated with Ethanol Metabolism in Mycobacteria

    No full text
    Tuberculosis is caused by Mycobacterium tuberculosis, and the increasing emergence of multidrug-resistant strains renders current treatment options ineffective. Although new antimycobacterial drugs are urgently required, their successful development often relies on complete understanding of the metabolic pathways—e.g., cholesterol assimilation—that are critical for persistence and for pathogenesis of M. tuberculosis. In this regard, mycofactocin (MFT) function appears to be important because its biosynthesis genes are predicted to be essential for M. tuberculosisin vitro growth in cholesterol. In determining the metabolic basis of this genetic requirement, our results unexpectedly revealed the essential function of MFT in ethanol metabolism. The metabolic dysfunction thereof was found to affect the mycobacterial growth in cholesterol which is solubilized by ethanol. This knowledge is fundamental in recognizing the bona fide function of MFT, which likely resembles the pyrroloquinoline quinone-dependent ethanol oxidation in acetic acid bacteria exploited for industrial production of vinegar.Mycofactocin (MFT) belongs to the class of ribosomally synthesized and posttranslationally modified peptides conserved in many Actinobacteria. Mycobacterium tuberculosis assimilates cholesterol during chronic infection, and its in vitro growth in the presence of cholesterol requires most of the MFT biosynthesis genes (mftA, mftB, mftC, mftD, mftE, and mftF), although the reasons for this requirement remain unclear. To identify the function of MFT, we characterized MFT biosynthesis mutants constructed in Mycobacterium smegmatis, M. marinum, and M. tuberculosis. We found that the growth deficit of mft deletion mutants in medium containing cholesterol—a phenotypic basis for gene essentiality prediction—depends on ethanol, a solvent used to solubilize cholesterol. Furthermore, functionality of MFT was strictly required for growth of free-living mycobacteria in ethanol and other primary alcohols. Among other genes encoding predicted MFT-associated dehydrogenases, MSMEG_6242 was indispensable for M. smegmatis ethanol assimilation, suggesting that it is a candidate catalytic interactor with MFT. Despite being a poor growth substrate, ethanol treatment resulted in a reductive cellular state with NADH accumulation in M. tuberculosis. During ethanol treatment, mftC mutant expressed the transcriptional signatures that are characteristic of respirational dysfunction and a redox-imbalanced cellular state. Counterintuitively, there were no differences in cellular bioenergetics and redox parameters in mftC mutant cells treated with ethanol. Therefore, further understanding of the function of MFT in ethanol metabolism is required to identify the cause of growth retardation of MFT mutants in cholesterol. Nevertheless, our results establish the physiological role of MFT and also provide new insights into the specific functions of MFT homologs in other actinobacterial systems

    J. Bacteriol.

    Get PDF

    Effect of impurities and processing on silicon solar cells. Volume 1: Characterization methods for impurities in silicon and impurity effects data base

    Get PDF
    Two major topics are treated: methods to measure and evaluate impurity effects in silicon and comprehensive tabulations of data derived during the study. Discussions of deep level spectroscopy, detailed dark I-V measurements, recombination lifetime determination, scanned laser photo-response, conventional solar cell I-V techniques, and descriptions of silicon chemical analysis are presented and discussed. The tabulated data include lists of impurity segregation coefficients, ingot impurity analyses and estimated concentrations, typical deep level impurity spectra, photoconductive and open circuit decay lifetimes for individual metal-doped ingots, and a complete tabulation of the cell I-V characteristics of nearly 200 ingots

    Deletion of nuoG from the Vaccine Candidate Mycobacterium bovis BCG ΔureC::hly Improves Protection against Tuberculosis

    No full text
    The current tuberculosis (TB) vaccine, Mycobacterium bovis Bacillus Calmette-Guàérin (BCG), provides insufficient protection against pulmonary TB. Previously, we generated a listeriolysin-expressing recombinant BCG strain, which to date has successfully completed phase I and phase IIa clinical trials. In an attempt to further improve efficacy, we deleted the antiapoptotic virulence gene nuoG, encoding NADH dehydrogenase 1 subunit G, from BCG ΔureC::hly. In vitro, deletion of nuoG unexpectedly led to strongly increased recruitment of the autophagosome marker LC3 to the engulfed vaccine, suggesting that nuoG also affects xenophagic pathways. In mice, BCG ΔureC::hly ΔnuoG vaccination was safer than BCG and improved protection over that of parental BCG ΔureC::hly, significantly reducing TB load in murine lungs, ameliorating pulmonary pathology, and enhancing immune responses. Transcriptome analysis of draining lymph nodes after vaccination with either BCG ΔureC::hly or BCG ΔureC::hly ΔnuoG demonstrated earlier and stronger induction of immune responses than that with BCG SSI and suggested upregulation of inflammasome activation and interferon-induced GTPases. In summary, BCG ΔureC::hly ΔnuoG is a promising next-generation TB vaccine candidate with excellent efficacy and safety

    Characterization of potential biomarkers of reactogenicity of licensed antiviral vaccines: randomized controlled clinical trials conducted by the BIOVACSAFE consortium

    Get PDF
    Funding text The authors are grateful for the vital contributions of the participating study volunteers, clinicians, nurses, and laboratory technicians at the Surrey study site. The work by Roberto Leone, laboratory technician at Humanitas Clinical and Research Center, is gratefully acknowledged. Finally, they thank Ellen Oe (GSK) for scientific writing assistance. The research leading to these results has received support from the Innovative Medicines Initiative Joint Undertaking under grant agreement n°115308, resources of which are composed of financial contribution from the European Union’s Seventh Framework Programme (FP7/2007–2013) and EFPIA companies’ in-kind contribution. The contribution of the European Commission to the Advanced Immunization Technologies (ADITEC) project (grant agreement n° 280873) is also gratefully acknowledged. Publisher Copyright: © 2019, The Author(s).Biomarkers predictive of inflammatory events post-vaccination could accelerate vaccine development. Within the BIOVACSAFE framework, we conducted three identically designed, placebo-controlled inpatient/outpatient clinical studies (NCT01765413/NCT01771354/NCT01771367). Six antiviral vaccination strategies were evaluated to generate training data-sets of pre-/post-vaccination vital signs, blood changes and whole-blood gene transcripts, and to identify putative biomarkers of early inflammation/reactogenicity that could guide the design of subsequent focused confirmatory studies. Healthy adults (N = 123; 20–21/group) received one immunization at Day (D)0. Alum-adjuvanted hepatitis B vaccine elicited vital signs and inflammatory (CRP/innate cells) responses that were similar between primed/naive vaccinees, and low-level gene responses. MF59-adjuvanted trivalent influenza vaccine (ATIV) induced distinct physiological (temperature/heart rate/reactogenicity) response-patterns not seen with non-adjuvanted TIV or with the other vaccines. ATIV also elicited robust early (D1) activation of IFN-related genes (associated with serum IP-10 levels) and innate-cell-related genes, and changes in monocyte/neutrophil/lymphocyte counts, while TIV elicited similar but lower responses. Due to viral replication kinetics, innate gene activation by live yellow-fever or varicella-zoster virus (YFV/VZV) vaccines was more suspended, with early IFN-associated responses in naïve YFV-vaccine recipients but not in primed VZV-vaccine recipients. Inflammatory responses (physiological/serum markers, innate-signaling transcripts) are therefore a function of the vaccine type/composition and presence/absence of immune memory. The data reported here have guided the design of confirmatory Phase IV trials using ATIV to provide tools to identify inflammatory or reactogenicity biomarkers.Peer reviewe
    corecore