372 research outputs found

    Photometric type Ia supernova surveys in narrow band filters

    Full text link
    We study the characteristics of a narrow band type Ia supernova survey through simulations based on the upcoming Javalambre Physics of the accelerating universe Astrophysical Survey (J-PAS). This unique survey has the capabilities of obtaining distances, redshifts, and the SN type from a single experiment thereby circumventing the challenges faced by the resource-intensive spectroscopic follow-up observations. We analyse the flux measurements signal-to-noise ratio and bias, the supernova typing performance, the ability to recover light curve parameters given by the SALT2 model, the photometric redshift precision from type Ia supernova light curves and the effects of systematic errors on the data. We show that such a survey is not only feasible but may yield large type Ia supernova samples (up to 250 supernovae at z<0.5z<0.5 per month of search) with low core collapse contamination (1.5\sim 1.5 per cent), good precision on the SALT2 parameters (average σmB=0.063\sigma_{m_B}=0.063, σx1=0.47\sigma_{x_1}=0.47 and σc=0.040\sigma_c=0.040) and on the distance modulus (average σμ=0.16\sigma_{\mu}=0.16, assuming an intrinsic scatter σint=0.14\sigma_{\mathrm{int}}=0.14), with identified systematic uncertainties σsys0.10σstat\sigma_{\mathrm{sys}}\lesssim 0.10 \sigma_{\mathrm{stat}}. Moreover, the filters are narrow enough to detect most spectral features and obtain excellent photometric redshift precision of σz=0.005\sigma_z=0.005, apart from \sim 2 per cent of outliers. We also present a few strategies for optimising the survey's outcome. Together with the detailed host galaxy information, narrow band surveys can be very valuable for the study of supernova rates, spectral feature relations, intrinsic colour variations and correlations between supernova and host galaxy properties, all of which are important information for supernova cosmological applications.Comment: 20 pages, 12 tables and 26 figures. Version accepted by MNRAS, with results slightly different from previous on

    IAA : Información y actualidad astronómica (44)

    Get PDF
    Sumario : La importancia de los cometas.-- Gamow, Alpher y el ylem.-- DECONSTRUCCIÓN Y otros ENSAYOS. El universo molecular.-- EL “MOBY DICK” DE... Alberto Molino (IAG).-- CIENCIA EN HISTORIAS...Tras la estela de Plateau.-- ACTUALIDAD.-- SALA LIMPIA.-- CIENCIA: PILARES E INCERTIDUMBRES. Explosiones de rayos gamma.N

    A Geometrically Supported z10z\sim10 Candidate Multiply-Imaged by the Hubble Frontier Fields Cluster Abell 2744

    Get PDF
    The deflection angles of lensed sources increase with their distance behind a given lens. We utilize this geometric effect to corroborate the zphot9.8z_{phot}\simeq9.8 photometric redshift estimate of a faint near-IR dropout, triply-imaged by the massive galaxy cluster Abell 2744 in deep Hubble Frontier Fields images. The multiple images of this source follow the same symmetry as other nearby sets of multiple images which bracket the critical curves and have well defined redshifts (up to zspec3.6z_{spec}\simeq3.6), but with larger deflection angles, indicating that this source must lie at a higher redshift. Similarly, our different parametric and non-parametric lens models all require this object be at z4z\gtrsim4, with at least 95\% confidence, thoroughly excluding the possibility of lower-redshift interlopers. To study the properties of this source we correct the two brighter images for their magnifications, leading to a SFR of 0.3M\sim0.3 M_{\odot}/yr, a stellar mass of 4×107M\sim4\times10^{7} M_{\odot}, and an age of 220\lesssim220 Myr (95\% confidence). The intrinsic apparent magnitude is 29.9 AB (F160W), and the rest-frame UV (1500A˚\sim1500 \AA) absolute magnitude is MUV,AB=17.6M_{UV,AB}=-17.6. This corresponds to 0.1Lz=8\sim0.1 L^{*}_{z=8} (0.2Lz=10\sim0.2 L^{*}_{z=10}, adopting dM/dz0.45dM^{*}/dz\sim0.45), making this candidate one of the least luminous galaxies discovered at z10z\sim10.Comment: 7 pages, 4 figures, 1 table; V2: very minor changes, ApJ Letters Accepte

    CLASH: Weak-Lensing Shear-and-Magnification Analysis of 20 Galaxy Clusters

    Get PDF
    We present a joint shear-and-magnification weak-lensing analysis of a sample of 16 X-ray-regular and 4 high-magnification galaxy clusters at 0.19<z<0.69 selected from the Cluster Lensing And Supernova survey with Hubble (CLASH). Our analysis uses wide-field multi-color imaging, taken primarily with Suprime-Cam on the Subaru Telescope. From a stacked shear-only analysis of the X-ray-selected subsample, we detect the ensemble-averaged lensing signal with a total signal-to-noise ratio of ~25 in the radial range of 200 to 3500kpc/h. The stacked tangential-shear signal is well described by a family of standard density profiles predicted for dark-matter-dominated halos in gravitational equilibrium, namely the Navarro-Frenk-White (NFW), truncated variants of NFW, and Einasto models. For the NFW model, we measure a mean concentration of c200c=4.010.32+0.35c_{200c}=4.01^{+0.35}_{-0.32} at M200c=1.340.09+0.101015MM_{200c}=1.34^{+0.10}_{-0.09} 10^{15}M_{\odot}. We show this is in excellent agreement with Lambda cold-dark-matter (LCDM) predictions when the CLASH X-ray selection function and projection effects are taken into account. The best-fit Einasto shape parameter is αE=0.1910.068+0.071\alpha_E=0.191^{+0.071}_{-0.068}, which is consistent with the NFW-equivalent Einasto parameter of 0.18\sim 0.18. We reconstruct projected mass density profiles of all CLASH clusters from a joint likelihood analysis of shear-and-magnification data, and measure cluster masses at several characteristic radii. We also derive an ensemble-averaged total projected mass profile of the X-ray-selected subsample by stacking their individual mass profiles. The stacked total mass profile, constrained by the shear+magnification data, is shown to be consistent with our shear-based halo-model predictions including the effects of surrounding large-scale structure as a two-halo term, establishing further consistency in the context of the LCDM model.Comment: Accepted by ApJ on 11 August 2014. Textual changes to improve clarity (e.g., Sec.3.2.2 "Number-count Depletion", Sec.4.3 "Shape Measurement", Sec.4.4 "Background Galaxy Selection"). Results and conclusions remain unchanged. For the public release of Subaru data, see http://archive.stsci.edu/prepds/clash

    J-PLUS: A wide-field multi-band study of the M15 globular cluster. Evidence of multiple stellar populations in the RGB

    Full text link
    The Javalambre Photometric Local Universe Survey (J-PLUS) provides wide field-of-view images in 12 narrow, intermediate and broad-band filters optimized for stellar photometry. Here we have applied J-PLUS data for the first time for the study of Galactic GCs using science verification data obtained for the very metal-poor GC M\,15. Our J-PLUS data provide low-resolution spectral energy distributions covering the near-UV to the near-IR, allowing us to search for MPs based on pseudo-spectral fitting diagnostics. J-PLUS CMDs are found to be particularly useful to search for splits in the sequences formed by the upper red giant branch (RGB) and asymptotic giant branch (AGB) stars. We interpret these split sequences as evidence for the presence of MPs. This demonstrates that the J-PLUS survey will have sufficient spatial coverage and spectral resolution to perform a large statistical study of GCs through multi-band photometry in the coming years.Comment: 11 pages, 11 figures. Accepted for publication @ A&

    Cluster-Cluster Lensing and the Case of Abell 383

    Get PDF
    Extensive surveys of galaxy clusters motivate us to assess the likelihood of cluster-cluster lensing (CCL), namely, gravitational-lensing of a background cluster by a foreground cluster. We briefly describe the characteristics of CCLs in optical, X-ray and SZ measurements, and calculate their predicted numbers for Λ\LambdaCDM parameters and a viable range of cluster mass functions and their uncertainties. The predicted number of CCLs in the strong-lensing regime varies from several (<10<10) to as high as a few dozen, depending mainly on whether lensing triaxiality bias is accounted for, through the c-M relation. A much larger number is predicted when taking into account also CCL in the weak-lensing regime. In addition to few previously suggested CCLs, we report a detection of a possible CCL in A383, where background candidate high-zz structures are magnified, as seen in deep Subaru observations.Comment: 9 pages, 5 figures, submitted to MNRA

    Galaxy clusters and groups in the ALHAMBRA Survey

    Get PDF
    We present a catalogue of 348 galaxy clusters and groups with 0.2<z<1.20.2<z<1.2 selected in the 2.78 deg2deg^2 ALHAMBRA Survey. The high precision of our photometric redshifts, close to 1%1\%, and the wide spread of the seven ALHAMBRA pointings ensure that this catalogue has better mass sensitivity and is less affected by cosmic variance than comparable samples. The detection has been carried out with the Bayesian Cluster Finder (BCF), whose performance has been checked in ALHAMBRA-like light-cone mock catalogues. Great care has been taken to ensure that the observable properties of the mocks photometry accurately correspond to those of real catalogues. From our simulations, we expect to detect galaxy clusters and groups with both 70%70\% completeness and purity down to dark matter halo masses of Mh3×1013MM_h\sim3\times10^{13}\rm M_{\odot} for z<0.85z<0.85. Cluster redshifts are expected to be recovered with 0.6%\sim0.6\% precision for z<1z<1. We also expect to measure cluster masses with σMhMCL0.250.35dex\sigma_{M_h|M^*_{CL}}\sim0.25-0.35\, dex precision down to 3×1013M\sim3\times10^{13}\rm M_{\odot}, masses which are 50%50\% smaller than those reached by similar work. We have compared these detections with previous optical, spectroscopic and X-rays work, finding an excellent agreement with the rates reported from the simulations. We have also explored the overall properties of these detections such as the presence of a colour-magnitude relation, the evolution of the photometric blue fraction and the clustering of these sources in the different ALHAMBRA fields. Despite the small numbers, we observe tentative evidence that, for a fixed stellar mass, the environment is playing a crucial role at lower redshifts (z<<0.5).Comment: Accepted for publication in MNRAS. Catalogues and figures available online and under the following link: http://bascaso.net46.net/ALHAMBRA_clusters.htm

    CLASH: Precise New Constraints on the Mass Profile of Abell 2261

    Get PDF
    We precisely constrain the inner mass profile of Abell 2261 (z=0.225) for the first time and determine this cluster is not "over-concentrated" as found previously, implying a formation time in agreement with {\Lambda}CDM expectations. These results are based on strong lensing analyses of new 16-band HST imaging obtained as part of the Cluster Lensing and Supernova survey with Hubble (CLASH). Combining this with revised weak lensing analyses of Subaru wide field imaging with 5-band Subaru + KPNO photometry, we place tight new constraints on the halo virial mass M_vir = 2.2\pm0.2\times10^15 M\odot/h70 (within r \approx 3 Mpc/h70) and concentration c = 6.2 \pm 0.3 when assuming a spherical halo. This agrees broadly with average c(M,z) predictions from recent {\Lambda}CDM simulations which span 5 <~ 8. Our most significant systematic uncertainty is halo elongation along the line of sight. To estimate this, we also derive a mass profile based on archival Chandra X-ray observations and find it to be ~35% lower than our lensing-derived profile at r2500 ~ 600 kpc. Agreement can be achieved by a halo elongated with a ~2:1 axis ratio along our line of sight. For this elongated halo model, we find M_vir = 1.7\pm0.2\times10^15 M\odot/h70 and c_vir = 4.6\pm0.2, placing rough lower limits on these values. The need for halo elongation can be partially obviated by non-thermal pressure support and, perhaps entirely, by systematic errors in the X-ray mass measurements. We estimate the effect of background structures based on MMT/Hectospec spectroscopic redshifts and find these tend to lower Mvir further by ~7% and increase cvir by ~5%.Comment: Submitted to the Astrophysical Journal. 19 pages, 14 figure
    corecore