49 research outputs found

    Percepción y valoración de los programas de garantía social desde una doble perspectiva: Aprendices y formadores

    Get PDF
    Novenes Jornades de Foment de la Investigació de la FCHS (Any 2003-2004)Los motivos por los cuales elegimos este tema, “Percepción y valoración de los PGS desde una doble perspectiva: aprendices y formadores”, han sido, en primer lugar, por la utilidad que representa para nosotras, estudiantes de la carrera de Psicopedagogía y futuros Psicopedagogos, y en segundo lugar porque nos interesaba hacer un pequeño estudio de campo sobre la utilidad, funcionamiento,… de los Programas de Garantía Social. Los Programas de Garantía Social son una medida más de atención a la diversidad, con criterios de compensación educativa para los alumnos más desfavorecidos que no hayan alcanzado los objetivos de la ESO y que se encuentren en situación de desventaja sociocultural o laboral. Se pretende ofrecer a los jóvenes que necesitan de un tratamiento educativo alternativo la posibilidad de mejorar sus condiciones para acceder a la vida activa o para poder reinsertarse en el sistema reglado posteriormente. Para poder llevar a cabo esta investigación hemos recibido una colaboración totalmente desinteresada de tres entidades: CEE Hortolans de Burriana, CEE La Panderola de Villa-real y la Asociación Síndrome de Down de Castellón. partir de la información recopilada en todos ellos, a través de un cuestionario dirigido a profesores y alumnos, hemos podido obtener la información necesaria para llevar a cabo nuestra investigación y poder alcanzar los objetivos que plantearemos más adelante

    La situación del patrimonio arqueológico subacuático en la cuenca extremeña del Tajo. Perspectivas de conservación, documentación y análisis

    Get PDF
    Trabajo presentado al I Congreso de Arqueología Náutica y Subacuática Española (ArNSe), sesión "Yacimientos en aguas continentales", celebrado en Cartagena (Murcia) del 14 al 16 de marzo de 2013.[ES]: Durante las décadas de 1960 y 1970 se acometieron obras de ingeniería hidráulica para la producción de energía eléctrica en el Tajo, lo que provocó que se sumergieran áreas con alto potencial arqueológico. Por su época de realización, apenas contaron con medidas correctoras de impacto, quedando sin realizar una documentación sistemática. En la actualidad hay cierta conciencia de la necesidad de intervenir sobre este patrimonio subacuático de aguas continentales, lo que debe generar un debate sobre cómo afrontar su conservación. La legislación no refleja la especificidad del patrimonio subacuático en aguas continentales, por lo que la consideración que reciben estos sitios es la habitual para la arqueología terrestre convencional. Parece evidente la necesidad de desarrollar técnicas para maximizar la recogida de información sobre los sitios arqueológicos y su entorno y al mismo tiempo, deben ser útiles para estudiar y modelar los agentes que provocan su deterioro.[EN]: During the 1960 and 1970 decades, several engineering works were performed along the Tagus River for producing hydroelectric energy; consequently areas with high potential archaeological were flooded. Since the heritage preservation polices were in an early stage, the works didn’t count with impact evaluation assesses, and a systematic documentation of heritage was never performed. Nowadays, there is awareness for engaging in activities directed to the underwater heritage that lies in continental waters, which should lead to a discussion about how to face its preservation. Current laws do not reflect the status of this specific underwater heritage, consequently, the sites are considered as conventional terrestrial archaeological heritage. It seems evident that is necessary to develop techniques to boost the gathering of information on the sites and their environments, which should be also dedicated to analyse and model the agents that aggravate its deterioration.Peer Reviewe

    Identification of Distinct Copper Species in Cu-CHA Samples Using NO as Probe Molecule. A Combined IR Spectroscopic and DFT Study

    Full text link
    [EN] Combining IR spectroscopy of NO adsorption on copper exchanged molecular sieves with the chabazite structure, i.e. Cu-SAPO-34 and Cu-SSZ-13, and theoretical calculations, different types of copper species have been identified. On one hand, [Cu¿OH]+ species can be accurately distinguished, characterized by a ¿NO frequency at 1788¿ 1798 cm¿1 depending on their location in the chabazite structure (6R vs. 8R) and composition (Cu-SAPO-34 vs. Cu-SSZ-13). On the other hand, dimeric copper oxo [Cu¿O¿ Cu]2+ species have been properly identified by means of DFT modelling, that proposes a ¿NO stretching frequency of 1887 cm¿1, which has been confirmed experimentally in the Cu-SAPO-34 sample. Finally the location of isolated Cu2+ ions either in the 6R units or in the 8R positions of the chabazite cavity could be accurately defined according to DFT data, and validated in the experimental IR spectra with IR bands between 1907 and 1950 cm¿1. Regarding to Cu+ species, IR spectroscopy of CO reveals different types of Cu+ species as evidenced by their ability to form mono, di and try carbonyls. The unambiguous differentiation of different types of copper species is of great interest in further identification of active sites for the NH3- SCR reaction.This work has been supported by the Spanish Government through "Severo Ochoa Program" (SEV 2012-0267), and MAT2015-71261-R, the European Union through ERC-AdG-2014-671093 (SynCatMatch); and the Generalitat Valenciana through the Prometeo program (PROMETEOII/2013/011). R.M. acknowledges "La Caixa - Severo Ochoa" International PhD Fellowships (call 2015).Concepción Heydorn, P.; Boronat Zaragoza, M.; Millan, R.; Moliner Marin, M.; Corma Canós, A. (2017). Identification of Distinct Copper Species in Cu-CHA Samples Using NO as Probe Molecule. A Combined IR Spectroscopic and DFT Study. Topics in Catalysis. 60(19-20):1653-1663. https://doi.org/10.1007/s11244-017-0844-7S165316636019-20Wilken N, Wijayanti K, Kamasamudram K, Currier NW, Vedaiyan R, Yezerets A, Olsson L (2012) Appl Catal B 111:58–66Kwak JH, Tran D, Burton SD, Szanyi J, Lee JH, Peden CHF (2012) J Catal 287:203–209Kwak JH, Tonkyn RG, Kim DH, Szanyi J, Peden CHF (2010) J Catal 275:187–190Bull I, Boorse RS, Jaglowski WM, Koermer GS, Moini A, Patchett JA, Xue WM, Burk P, Dettling JC, Caudle MT (2008) U.S. Patent 0,226,545Martínez-Franco R, Moliner M, Franch C, Kustov A, Corma A (2012) Appl Catal B 127:273–280Borfecchia E, Lomachenko KA, Giordanino F, Falsig H, Beato P, Soldatov AV, Bordiga S, Lamberti C (2015) Chem Sci 6:548–563Beale AM, Gao F, Lezcano-Gonzalez I, Peden CHF, Szanyi J (2015) Chem Soc Rev 44:7371–7405Beale AM, Gao F, Lezcano-Gonzalez I, Slawinksi WA, Wragg DS (2016) Chem Commun 52:6170–6173Kwak JH, Varga T, Peden CHF, Gao F, Hanson JC, Szanyi J (2014) J Catal 314:83–89Korhonen ST, Fickel DW, Lobo RF, Weckhuysen BM, Beale AM (2011) Chem Commun 47:800–802Kwak JH, Zhu H, Lee JH, Peden CHF, Szanyi J (2012) Chem Commun 48:4758–4760Paolucci C, Parekh AA, Khurana I, Iorio JRD, Li H, Caballero JDA, Shih AJ, Anggara T, Delgass WN, Miller JT, Ribeiro FH, Gounder R, Schneider WF (2016) J Am Chem Soc 138:6028–6048Fickel DW, Fedeyko JM, Lobo RF (2010) J Phys Chem C 114:1633–1640Gao F, Walter ED, Karp EM, Luo J, Tonkyn RG, Kwak JH, Szanyi J, Peden CHF (2013) J Catal 300:20–29Andersen CW, Bremholm M, Vennestrom PNR, Blichfeld AB, Lundegaard LF, Iversen BB (2014) IUCRJ 1:382–386Godikse A, Stappen FN, Vennestrom PNR, Giordanino F, Rasmussen SB, Lundegaard LF, Mossin S (2014) J Phys Chem C 118:23126–23138Lei GD, Adelman BJ, Sárkány J, Sachtler WMH (1995) Appl Catal B 5:245–256Da Costa P, Moden B, Meitzner GD, Lee DK, Iglesia E (2002) Phys Chem Chem Phys 4:4590–4601Da Costa P, Modén B, Meitzner GD, Lee DK, Iglesia E (2002) Phys Chem Chem Phys 4:4590–4601Bordiga S, Pazé C, Berlier G, Scarano D, Spoto G, Zecchina A, Lamberti C (2001) Catal Today 70:91–105Martínez-Franco R, Moliner M, Concepcion P, Thogersen JR, Corma A (2014) J Catal 314:73–82Martínez-Franco R, Moliner M, Thogersen JR, Corma A (2013) Chem Cat Chem 5:3316–3323Hadjiivanov K, Vayssilov GN (2002) Adv Catal 47:307–511Hadjiivanov K (2000) Catal Rev Sci Eng 42:71–144Zaki MI, Knözinger H (1987) Mater Chem Phys 17:201–215Zaki MI, Knözinger H (1987) Spectrochim Acta 43A:1455–1459Neyman KM, Strodel P, Ruzankin SP, Schlensog N, Knözinger H, Rösch N (1995) Catal Lett 31:273–285Strodel P, Neyman KM, Knözinger H, Rösch N (1995) Chem Phys Lett 240:547–552Spielbauer D, Mekheimer GAH, Zaki MI, Knözinger H (1996) Catal Lett 40:71–79Hadjiivanov K, Busca G (1994) Langmuir 10:4534–4541Hadjiivanov K, Lamotte J, Lavalley JC (1997) Langmuir 13:3374–3382Concepción P, Hadjiivanov K, Knözinger H (1999) J Catal 184(1):172–179Lange FC, Schmelz H, Knözinger H (1996) Appl Catal B 8:245–265Wang D, Zhang L, Kamasamudram K, Epling WS (2013) ACS Catal 3:871–878Combita D, Concepción P, Corma A (2014) J Catal 311:339–349Concepción P, Botella P, López Nieto JM (2004) Appl Catal A 278:45–56Lamberti C, Bordiga S, Salvalaggio M, Spoto G, Zecchina A, Geobaldo F, Vlaic G, Bellatreccia M (1997) J Phys Chem B 101:344–360Lamberti C, Palomino GT, Bordiga S, Berlier G, Acapito FD, Zecchina A (2000) Angew Chem Int Ed 39:2138–2140Palomino GT, Bordiga S, Zecchina A, Marra GL, Lamberti C (2000) J Phys Chem B 104:8641–8651Zecchina A, Bordiga S, Salvalaggio M, Spoto G, Scarano D, Lamberti C (1998) J Catal 173:540–542Zecchina A, Bordiga S, Palomino GT, Scarano D, Lamberti C, Salvalaggio M (1999) J Phys Chem B 103:3833–3844Lamberti C, Bordiga S, Zecchina A, Salvalaggio M, Geobaldo F, Arean CO (1998) J Chem Soc Faraday Trans 94:1519–1525Palomino GT, Giamello E, Fisicaro P, Bordiga S, Lamberti C, Zecchina A (2000) Stud Surf Sci Catal 130:2915–2920Xamena F, Fisicaro P, Berlier G, Zecchina A, Palomino GT, Prestipino C, Bordiga S, Giamello E, Lamberti C (2003) J Phys Chem B 107:7036–7044Prestipino C, Regli L, Vitillo JG, Bonino F, Damin A, Lamberti C, Zecchina A, Solari PL, Kongshaug KO, Bordiga S (2006) Chem Mater 18:1337–1346Lamberti C, Groppo E, Spoto G, Bordiga S, Zecchina A (2007) Adv Catal 51:1–74Lamberti C, Zecchina A, Groppo E, Bordiga S (2010) Chem Soc Rev 39:4951–5001Spoto G, Zecchina A, Bordiga S, Ricchiardi G, Martra G, Leofanti G, Petrini G (1994) Appl Catal B 3:151–172Prestipino C, Berlier G, Xamena F, Spoto G, Bordiga S, Zecchina A, Palomino GT, Yamamoto T, Lamberti C (2002) Chem Phys Lett 363:389–396Leofanti G, Marsella A, Cremaschi B, Garilli M, Zecchina A, Spoto G, Bordiga S, Fisicaro P, Berlier G, Prestipino C, Casali G, Lamberti C (2001) J Catal 202:279–295Boronat M, Concepción P, Corma A (2009) J Phys Chem C 113:16772–16784Boronat M, Concepción P, Corma A, Renz M, Valencia S (2005) J Catal 234:111–118Zhang R, McEwen JS, Kollar M, Gao F, Wang Y, Szanyi J, Peden CHF (2014) ACS Catal4:4093–4105Göltl F, Bulo RE, Hafner J, Sautet P (2013) J Phys Chem Lett 4:2244–2249Palomino GT, Fisicarro P, Bordiga S, Zecchina A, Giamello E, Lamberti C (2000) J Phys Chem B 104:4064–4073Perdew JP, Chevary JA, Vosko SH, Jackson KA, Pederson MR, Singh DJ, Fiolhais C (1992) Phys Rev B 46:6671–6687Perdew JP, Wang Y (1992) Phys Rev B 45:13244–13249Kresse G, Furthmüller J (1996) Phys Rev B 54:11169–11186Kresse G, Hafner J (1993) Phys Rev B 47:558–561Blöchl PE (1994) Phys Rev B 50:17953–17979Göltl F, Sautet P, Hermans I (2015) Angew Chem Int Ed 54:7799–7804Uzunova EL, Göltl F, Kresse G, Hafner J (2009) J Phys Chem C 113:5247Göltl F, Hafner J (2012) J Chem Phys 136:064503–064531Giordanino F, Vennestrom PNR, Lundegaard LF, Stappen FN, Mossin S, Beato P, Bordiga S, Lamberti C (2013) Dalton Trans 42:12741–12761Bordiga S, Regli L, Cocina D, Lamberti C, Bjorgen M, Lillerud KP (2005) J Phys Chem B 109:2779–2784Blasco T, Boronat M, Concepción P, Corma A, Law D, Vidal-Moya JA (2007) Angew Chem Int Ed 46:3938–3941Kondo JN, Nishitani R, Yoda E, Yokoi T, Tatsumi T, Domen K (2010) Phys Chem Chem Phys12:11576–11586Martens JA, Jacobs PA (2001) Stud Surf Sci Catal 137:633–671Dedecek J, Sobalík Z, Tvaruzková Z, Kaucký D, Wichterlová B (1995) J Phys Chem 99:16327–1633

    In-Situ-Generated Active Hf-hydride in Zeolites for the Tandem N-Alkylation of Amines with Benzyl Alcohol

    Full text link
    [EN] In this work, we have studied the catalytic activity of different silicates (MFI, MCM-41, and Beta) containing Lewis acid sites (including Sn, Ti, Zr, and Hf) for the tandem N-alkylation reaction of aniline with benzyl alcohol. The Hf- and Zr-Beta were the most active catalysts for this transformation, showing in both cases selectivities toward the corresponding N-benzylaniline higher than 97%. FTIR and DFT analyses confirm that the active sites in the Hf-Beta catalyst for this process are the open sites where one of the four Hf-O bonds is hydrolyzed. Moreover, the amount of these active species could be notoriously increased with previous thermal treatment of the Lewis acid zeolite with benzyl alcohol. Isotopically labeled experiments and theoretical mechanistic studies reveal that the N-alkylation reaction occurs through a hydrogen borrowing pathway, in which in situ Hf-hydride species were generated. Finally, the Hf-Beta zeolite was reused several times in the N-alkylation reaction without any appreciable deactivation detected. This catalytic system could be expanded to a variety of amines, including aliphatic and biomass-derived amines.This work has been supported by the Spanish Government through "severo Ochoa" (SEV-2016-0683, MINECO), MAT2017-82288-C2-1-P (AEI/FEDER, UE), and RTI2018101033-B-I00 (MCIU/AEI/FEDER, UE). Dr. Susana Valencia is acknowledged for the preparation of the Ti-Beta sample. The Electron Microscopy Service of the UPV is also acknowledged for their help in sample characterization. Part of the computations were performed on the Tirant III cluster of the Servei d'Informa`tica of the University of Valencia.Rojas-Buzo, S.; Concepción Heydorn, P.; Corma Canós, A.; Moliner Marin, M.; Boronat Zaragoza, M. (2021). In-Situ-Generated Active Hf-hydride in Zeolites for the Tandem N-Alkylation of Amines with Benzyl Alcohol. ACS Catalysis. 11(13):8049-8061. https://doi.org/10.1021/acscatal.1c01739S80498061111

    Metalloenzyme-Inspired Ce-MOF Catalyst for Oxidative Halogenation Reactions

    Get PDF
    [EN] The structure of UiO-66(Ce) is formed by CeO2-x defective nanoclusters connected by terephthalate ligands. The initial presence of accessible Ce3+ sites in the as-synthesized UiO-66(Ce) has been determined by X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared (FTIR)-CO analyses. Moreover, linear scan voltammetric measurements reveal a reversible Ce4+/Ce3+ interconversion within the UiO-66(Ce) material, while nanocrystalline ceria shows an irreversible voltammetric response. This suggests that terephthalic acid ligands facilitate charge transfer between subnanometric metallic nodes, explaining the higher oxidase-like activity of UiO-66(Ce) compared to nanoceria for the mild oxidation of organic dyes under aerobic conditions. Based on these results, we propose the use of Ce-based metal-organic frameworks (MOFs) as efficient catalysts for the halogenation of activated arenes, as 1,3,5-trimethoxybenzene (TMB), using oxygen as a green oxidant. Kinetic studies demonstrate that UiO-66(Ce) is at least three times more active than nanoceria under the same reaction conditions. In addition, the UiO-66(Ce) catalyst shows an excellent stability and can be reused after proper washing treatments. Finally, a general mechanism for the oxidative halogenation reaction is proposed when using Ce-MOF as a catalyst, which mimics the mechanistic pathway described for metalloenzymes. The superb control in the generation of subnanometric CeO2-x defective clusters connected by adequate organic ligands in MOFs offers exciting opportunities in the design of Ce-based redox catalysts.This work has been supported by the Spanish Government through the "Severo Ochoa" (SEV-2016-0683, MINECO) and RTI2018-101033-B-I00 (MCIU/AEI/FEDER, UE). J. M. Salas is acknowledged for his contribution to CO-IR experiments. The Electron Microscopy Service of the UPV is also acknowledged for their help in sample characterization.Rojas-Buzo, S.; Concepción Heydorn, P.; Olloqui-Sariego, JL.; Moliner Marin, M.; Corma Canós, A. (2021). Metalloenzyme-Inspired Ce-MOF Catalyst for Oxidative Halogenation Reactions. ACS Applied Materials & Interfaces. 13(26):31021-31030. https://doi.org/10.1021/acsami.1c074963102131030132

    Feasibility, safety and efficacy of transauricular vagus nerve stimulation in a cohort of patients with disorders of consciousness

    Full text link
    This work was supported by grant from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement no. 778234- DoCMA project and by Conselleria de Educacion, Investigacion, Cultura y Deporte of Generalitat Valenciana (SEJI/2019/017) and Vicerrectorado de Investigacion, Innovacion y Transferencia of Universitat Politecnica de Valencia (PAID-06-18).Noé, E.; Ferri, J.; Colomer, C.; Moliner, B.; O'valle, M.; Ugart, P.; Rodríguez, C.... (2020). Feasibility, safety and efficacy of transauricular vagus nerve stimulation in a cohort of patients with disorders of consciousness. Brain Stimulation. 13(2):427-429. https://doi.org/10.1016/j.brs.2019.12.005S427429132Thibaut, A., Schiff, N., Giacino, J., Laureys, S., & Gosseries, O. (2019). Therapeutic interventions in patients with prolonged disorders of consciousness. The Lancet Neurology, 18(6), 600-614. doi:10.1016/s1474-4422(19)30031-6Engineer, N. D., Kimberley, T. J., Prudente, C. N., Dawson, J., Tarver, W. B., & Hays, S. A. (2019). Targeted Vagus Nerve Stimulation for Rehabilitation After Stroke. Frontiers in Neuroscience, 13. doi:10.3389/fnins.2019.00280Corazzol, M., Lio, G., Lefevre, A., Deiana, G., Tell, L., André-Obadia, N., … Sirigu, A. (2017). Restoring consciousness with vagus nerve stimulation. Current Biology, 27(18), R994-R996. doi:10.1016/j.cub.2017.07.060Yu, Y., Yang, Y., Wang, L., Fang, J., Chen, Y., He, J., & Rong, P. (2017). Transcutaneous auricular vagus nerve stimulation in disorders of consciousness monitored by fMRI: The first case report. Brain Stimulation, 10(2), 328-330. doi:10.1016/j.brs.2016.12.004Thibaut, A., Di Perri, C., Chatelle, C., Bruno, M.-A., Bahri, M. A., Wannez, S., … Laureys, S. (2015). Clinical Response to tDCS Depends on Residual Brain Metabolism and Grey Matter Integrity in Patients With Minimally Conscious State. Brain Stimulation, 8(6), 1116-1123. doi:10.1016/j.brs.2015.07.024Keute, M., Ruhnau, P., Heinze, H.-J., & Zaehle, T. (2018). Behavioral and electrophysiological evidence for GABAergic modulation through transcutaneous vagus nerve stimulation. Clinical Neurophysiology, 129(9), 1789-1795. doi:10.1016/j.clinph.2018.05.026Kleim, J. A., & Jones, T. A. (2008). Principles of Experience-Dependent Neural Plasticity: Implications for Rehabilitation After Brain Damage. Journal of Speech, Language, and Hearing Research, 51(1). doi:10.1044/1092-4388(2008/018)Thibaut, A., Wannez, S., Donneau, A.-F., Chatelle, C., Gosseries, O., Bruno, M.-A., & Laureys, S. (2017). Controlled clinical trial of repeated prefrontal tDCS in patients with chronic minimally conscious state. Brain Injury, 31(4), 466-474. doi:10.1080/02699052.2016.1274776Van Erp, W. S., Aben, A. M. L., Lavrijsen, J. C. M., Vos, P. E., Laureys, S., & Koopmans, R. T. C. M. (2019). Unexpected emergence from the vegetative state: delayed discovery rather than late recovery of consciousness. Journal of Neurology, 266(12), 3144-3149. doi:10.1007/s00415-019-09542-3Thibaut, A., Chennu, S., Chatelle, C., Martens, G., Annen, J., Cassol, H., & Laureys, S. (2018). Theta network centrality correlates with tDCS response in disorders of consciousness. Brain Stimulation, 11(6), 1407-1409. doi:10.1016/j.brs.2018.09.00

    Synthesis, characterization and reactivity of high hydrothermally stable Cu-SAPO-34 materials prepared by one-pot processes

    Full text link
    This paper focuses on the design of an innovative air-conditioning system, namely a magnetocaloric air-conditioner for an electric minibus. An integrated design of the complete system is necessary, as the hot and cold side of the regenerator will work under dynamic conditions which depend on the instantaneous thermal load in the cabin. In order to assist the design of the system, a dynamic model has been developed for the cabin, the hydraulic loops and heat exchangers, and the magnetocaloric unit. This paper presents (i) a description of the dynamic models, (ii) an analysis of the operating conditions of the magnetocaloric unit and (iii) a discussion on the design of the magnetocaloric air-conditioner. The results show that the electric minibus requests 1.60 kW of cooling power over a span of 37 K in cooling mode, and 3.39 kW of heating power over a span of 40 K.This work has been supported by Haldor-Topsoe, the Spanish Government through Consolider Ingenio 2010-Multicat, the "Severo Ochoa Program", and MAT2012-37160. Manuel Moliner also acknowledges to "Subprograma Ramon y Cajal" for the contract RYC-2011-08972. The authors thank Isabel Millet for technical support.Martínez Franco, R.; Moliner Marin, M.; Concepción Heydorn, P.; Thogersen, JR.; Corma Canós, A. (2014). Synthesis, characterization and reactivity of high hydrothermally stable Cu-SAPO-34 materials prepared by one-pot processes. Journal of Catalysis. 314:73-82. https://doi.org/10.1016/j.jcat.2014.03.018S738231

    La catalogación del patrimonio arqueológico subacuático en la cuenca extremeña del Tajo. Primeros pasos hacia su salvaguarda

    Full text link
    El patrimonio cultural subacuático ubicado en las orillas de los ríos españoles, se ha visto afectado desde la segunda mitad del siglo XX, por la inundación provocada por la construcción de embalses y canales de derivación dedicados a riego y producción de energía eléctrica, fundamentalmente. La época en la que se realizaron estas grandes obras de contención coincidieron con un momento en el que la protección del patrimonio quedaba relegada a un segundo plano, prevaleciendo “el ideario hidráulico de Costa” (Gil Olcina 1991: 18) que basaba en “…los alumbramientos y depósitos de aguas…” el “…progreso agrícola y social de España…” (Costa 1911). En esta comunicación tratamos de abordar la problemática que supuso la inundación de un buen número de sitios arqueológicos, entre otros tipos como el etnográfico, tras el embalsamiento de casi la totalidad de la cuenca extremeña del río Tajo. La mayor parte del terreno fue inundada sin tomar en cuenta su valor arqueológico y cultural, y sin la toma de medidas necesarias de minimización del impacto arqueológico de los yacimientos que entonces se conocían. Estos trabajos realizados antes de la inundación, se limitaron a excavaciones de urgencia concluidas con premura ante la inminente inundación y al traslado de tres importantes monumentos, dos templos y un puente romano, elementos altamente valorados en la época que tratamos. Lo que actualmente encontramos cada vez que, eventualmente, se produce un descenso del nivel de los embalses, son sitios inéditos, que han sido exhumados por la acción del agua, otros que han desaparecido debido a su efecto erosivo, y sitios que han sufrido expolio y vandalismo al quedarse desprotegidos. Las medidas de vigilancia no son suficientes en estos períodos que llegan a prolongarse, en ocasiones durante meses, además las intervenciones arqueológicas que se realizan aprovechando la emersión, no están coordinadas con los organismos que controlan estos embalses, produciéndose buen número de veces, la subida del agua provocando la detención o celeridad de las campañas. Creemos que la primera medida a tomar para que cambie esta situación y puedan estudiarse y protegerse debidamente estos sitios, es la catalogación e inventario de los mismos. Ya que proteger es imposible sin conocer (http://ita.calameo.com/read/000075335b012b37e3d4b, p. 39), a partir de una tesis doctoral que se está desarrollando en la UPV y desde el Instituto de Arqueología - Mérida (CSIC – Gobierno de Extremadura), se ha estado trabajando en la elaboración de un catálogo de este patrimonio, a partir de una serie de campos que consideramos indispensables para la valoración de daños y tiempo de vida de los yacimientos. El análisis de los sitios registrados en el catálogo proporciona información suficiente para proponer medidas de minimización del impacto arqueológico o para mejorar su conservación.Matamoros Coder, P.; Carrascosa Moliner, MB.; Cerrillo Cuenca, E. (2015). La catalogación del patrimonio arqueológico subacuático en la cuenca extremeña del Tajo. Primeros pasos hacia su salvaguarda. Arché. (10):137-144. http://hdl.handle.net/10251/852071371441
    corecore