105 research outputs found
Improved biosensing of Legionella by integrating filtration and immunomagnetic separation of the bacteria retained in filters
Altres ajuts: acords transformatius de la UABA novel approach is presented that combines filtration and the direct immunomagnetic separation of the retained bacteria Legionella in filters, for further electrochemical immunosensing. This strategy allows for the separation and preconcentration of the water-borne pathogen from high-volume samples, up to 1000 mL. The limit of detection of the electrochemical immunosensor resulted in 100 CFU mL−1 and improved up to 0.1 CFU mL−1 when the preconcentration strategy was applied in 1 L of sample (103-fold improvement). Remarkably, the immunosensor achieves the limit of detection in less than 2.5 h and simplified the analytical procedure. This represents the lowest concentration reported to date for electrochemical immunosensing of Legionella cells without the need for pre-enrichment or DNA amplification. Furthermore, the study successfully demonstrates the extraction of bacteria retained on different filtering materials using immunomagnetic separation, highlighting the high efficiency of the magnetic particles to pull out the bacteria directly from solid materials. This promising feature expands the applicability of the method beyond water systems for detecting bacteria retained in air filters of air conditioning units by directly performing the immunomagnetic separation in the filters
Molecular detection of mycobacterium tuberculosis in oral mucosa from patients with presumptive tuberculosis
Funding: This research was funded by a Strategic Award grant from the European and Developing Countries Clinical Trials Partnership (grant DRIA2014-309) and its cofounders, the Medical Research Council UK, and Institutode Salud Carlos III (ISCIII), Spain (PI116/01912); and from the European Union’s Horizon 2020 Research and Innovation Programme under the Marie Skłodowska-Curie grant agreement no. 823854 (INNOVA4TB).Tuberculosis (TB) diagnosis is increasingly based on the detection of Mycobacterium tuberculosis complex (MTBC) DNA in sputum using molecular diagnostic tests as the first test for diagnosis. However, sputum can be difficult to obtain in children, patients without productive cough, and the elderly and approaches testing non-sputum samples are needed. We evaluated whether TB can be detected from the oral mucosa of patients with TB. Adults with presumptive TB were examined using culture, Xpert MTB/RIF, smear microscopy and X-Rays. Oral mucosa swabs collected on PrimeStore-MTM, stored at room temperature if tested within 30 days or at −20 °C if examined at a later time. RT-PCR was performed to detect M. tuberculosis DNA. Eighty patients had bacteriologically-confirmed TB, 34 had bacteriologically-negative TB (negative tests but abnormal X-rays) and 152 were considered not to have TB (not TB). Oral swabs RT-PCR were positive in 29/80 (36.3%) bacteriologically-confirmed, 9/34 (26.5%) bacteriologically-negative and 29/152 (19.1%) not TB. The yield varied among samples stored for less and more than 30 days (p = 0.013) from 61% (11/18) and 29% (18/62) among bacteriologically confirmed, and 30.8% (4/13) and 23.8% (5/21) among bacteriologically-negative participants. Among not TB patients, the specificity was 80.9% (123/152), being 78.3% (18/23) among samples stored less than 30 days and 81.4% (105/129) among samples stored for more than 30 days (p = 0.46). The detection of M. tuberculosis in oral mucosa samples is feasible, but storage conditions may affect the yield.Publisher PDFPeer reviewe
Mycobacterium detection method combining filtration, immunomagnetic separation, and electrochemical readout in a portable biosensing device
Altres ajuts: acords transformatius de la UABThis study addresses a straightforward and highly sensitive approach for detecting Mycobacterium fortuitum. The method involves a combination of filtration and direct immunomagnetic separation to isolate the bacteria retained on filters for further electrochemical magneto immunosensing in a handheld device. Unlike conventional methods involving pre-enrichment by culturing, this approach employs a simplified preconcentration technique, which includes filtration of large water samples, up to 100 mL, followed by a one-step process of immunomagnetic separation and labeling. After a 60-min, during which the filter with the retained bacteria and all the reagents (including modified magnetic particles and enzymatic conjugates) are incubated, the resulting product is directly drop into a cartridge, capable of performing magnetic actuation and washing. The electrochemical readout is carried out on a portable battery-operated device within 30 seconds. Remarkably, the immunosensor demonstrates an outstanding limit of detection of 5 CFU mL−1 in hemodialysis water processing 100 mL of sample. This achievement is remarkable considering the short and simplified analytical procedure, compared to the traditional isolation and culturing of mycobacteria, which typically takes 2 weeks
Microbead-based spoligotyping of Mycobacterium tuberculosis from Ziehl-Neelsen-stained microscopy preparations in Ethiopia
The worldwide dissemination of Mycobacterium tuberculosis strains has led to the study of their genetic diversity. One of the most used genotyping methods is spoligotyping, based on the detection of spacers in the clustered regularly interspaced short palindromic repeats (CRISPR) locus. This study assessed the performance of a microbead-based spoligotyping assay using samples extracted from Ziehl-Neelsen-stained smear-microscopy preparations and described the genetic diversity of Mycobacterium tuberculosis among new TB patients in Southern Nations, Nationalities and Peoples’ Region (SNNPR) in Ethiopia. Among the 91 samples analysed, 59 (64.8%) generated spoligotyping patterns. Fifty (84.7%) samples were classified into 12 clusters (mostly Lineage 4 or 3) comprising 2–11 samples and nine had unique spoligotyping patterns. Among the 59 spoligotyping patterns, 25 belonged to the T1 sublineage, 11 to the T3-ETH, 5 to the URAL, 4 to the H3 and 14 to other L4 sublineages. There was a remarkable variation in genetic distribution in SNNPR compared to other regions of the country. Microbead-based spoligotyping is an easy-to-perform, high-throughput assay that can generate genotyping information using material obtained from smear microscopy preparations. The method provides an opportunity to obtain data of the M. tuberculosis genetic epidemiology in settings with limited laboratory resources
Diagnostic Performance of the Fujifilm SILVAMP TB-LAM in Children with Presumptive Tuberculosis
Current diagnostics for tuberculosis (TB) only manage to confirm a small proportion of children with TB and require respiratory samples, which are difficult to obtain. There is a need for non-invasive biomarker-based tests as an alternative to sputum testing. Fujifilm SILVAMP TB lipoarabinomannan (FujiLAM), a lateral-flow test to detect lipoarabinomannan in urine, is a novel non-sputum-based point-of-care diagnostic reported to have increased sensitivity for the diagnosis of TB among human immunodeficiency virus (HIV)-infected adults. We evaluate the performance of FujiLAM in children with presumptive TB. Fifty-nine children attending a paediatric hospital in Haiti with compatible signs and symptoms of TB were examined using Xpert MTB/RIF, smear microscopy and X-rays, and classified according to the certainty of diagnosis into bacteriologically confirmed TB ( = 5), unconfirmed TB (bacteriologically negative, = 50) and unlikely TB ( = 4). Healthy children ( = 20) were enrolled as controls. FujiLAM sensitivity and specificity were 60% and 95% among children with confirmed TB. FujiLAM's high specificity and its characteristics as a point-of-care indicate the test has a good potential for the diagnosis of TB in children
Genetic characterization of Mycobacterium tuberculosis complex isolates circulating in Abuja, Nigeria
WOS:000446783800001Objective: Nigeria ranks fourth among the high tuberculosis (TB) burden countries. This study describes the prevalence of drug resistance and the genetic diversity of Mycobacterium tuberculosis in Abuja's Federal Capital Territory. Materials and methods: Two hundred and seventy-eight consecutive sputum samples were collected from adults with presumptive TB during 2013-2014. DNA was extracted from Lowenstein-Jensen cultures and analyzed for the identification of nontuberculous mycobacteria species, detection of drug resistance with line probe assays, and high-throughput spacer oligonucleotide typing (spoligotyping) using microbead-based hybridization. Results: Two hundred and two cultures were positive for M. tuberculosis complex, 24 negative, 38 contaminated, and 15 positive for nontuberculous mycobacteria. Five (2.5%)M. tuberculosis complex isolates were resistant to rifampicin (RIF) and isoniazid (multidrug resistant), nine (4.5%) to RIF alone, and 15 (7.4%) to isoniazid alone; two RIF-resistant isolates were also resistant to fluoroquinolones and ethambutol, and one multidrug resistant isolate was also resistant to ethambutol. Among the 180 isolates with spoligotyping results, 164 (91.1%) were classified as lineage 4 (Euro-American), 13 (7.2%) as lineage 5 (West African 1), two (1.1%) as lineage 2 (East Asia), and one (0.6%) as lineage 6 (West African 2). One hundred and fifty-six (86.7%) isolates were grouped in 17 clusters (2-108 isolates/cluster), of which 108 (60.0%) were grouped as L4.6.2/Cameroon (spoligotype international type 61). Conclusion: The description of drug resistance prevalence and genetic diversity of M tuberculosis in this study may be useful for improving TB control in Nigeria
Joint Observation of the Galactic Center with MAGIC and CTA-LST-1
MAGIC is a system of two Imaging Atmospheric Cherenkov Telescopes (IACTs), designed to detect very-high-energy gamma rays, and is operating in stereoscopic mode since 2009 at the Observatorio del Roque de Los Muchachos in La Palma, Spain. In 2018, the prototype IACT of the Large-Sized Telescope (LST-1) for the Cherenkov Telescope Array, a next-generation ground-based gamma-ray observatory, was inaugurated at the same site, at a distance of approximately 100 meters from the MAGIC telescopes. Using joint observations between MAGIC and LST-1, we developed a dedicated analysis pipeline and established the threefold telescope system via software, achieving the highest sensitivity in the northern hemisphere. Based on this enhanced performance, MAGIC and LST-1 have been jointly and regularly observing the Galactic Center, a region of paramount importance and complexity for IACTs. In particular, the gamma-ray emission from the dynamical center of the Milky Way is under debate. Although previous measurements suggested that a supermassive black hole Sagittarius A* plays a primary role, its radiation mechanism remains unclear, mainly due to limited angular resolution and sensitivity. The enhanced sensitivity in our novel approach is thus expected to provide new insights into the question. We here present the current status of the data analysis for the Galactic Center joint MAGIC and LST-1 observations
MAGIC and H.E.S.S. detect VHE gamma rays from the blazar OT081 for the first time: a deep multiwavelength study
https://pos.sissa.it/395/815/pdfPublished versio
- …