61 research outputs found

    Cytogenetic studies in Pentatomidae (Heteroptera): A review

    Get PDF
    The suborder Heteroptera constitutes one of the most important insect groups because most species are plants feeders and cause damage on many plants of economic importance. One of the most important cytogenetic characteristics of Heteroptera is the holokinetic nature of the chromosomes. One particular feature of some species of Pentatomidae is the regular presence of an abnormal meiosis in one testicular lobe (harlequin lobe). From the 28 species cytogenetically analysed from Argentine material, 21 present the diploid number 2n ¼ 14, four species present a reduced number (2n ¼ 12) and another three species possess an increased diploid number (2n ¼ 16); among all these only three present an harlequin lobe. In the present work, a bibliographic review of the chromosome number and sex determining system of 294 species and subspecies belonging to 121 genera within the subfamilies Asopinae, Discocephalinae, Edessinae, Pentatominae, Phyllocephalinae and Podopinae is presented. The male diploid numbers range from six to 27 with a mode in 14 chromosomes; this last diploid number is present in 85% of the species. The sex chromosome determining system is XY/XX except in three species: Macropygium reticulare (Fabricius, 1803), Rhytidolomia senilis (Say, 1832) and Thyanta calceata (Say, 1832) which present derived sex chromosome systems. Furthermore, the cytogenetic relationships with the other families of Pentatomoidea are discussed

    High karyotypic variation in Orthemis Hagen, 1861 species, with insights about the neo-XY in Orthemis ambinigra Calvert, 1909 (Libellulidae, Odonata)

    Get PDF
    The American dragonfly genus Orthemis Hagen, 1861 is mainly found in the Neotropical region. Seven of 28 taxonomically described species have been reported from Argentina. Chromosome studies performed on this genus showed a wide variation in chromosome number and a high frequency of the neoXY chromosomal sex-determination system, although the sexual pair was not observed in all cases. This work analyzes the spermatogenesis of Orthemis discolor (Burmeister, 1839), O. nodiplaga Karsch, 1891 and O. ambinigra Calvert, 1909 in individuals from the provinces of Misiones and Buenos Aires, Argentina. Orthemis discolor has 2n=23, n=11+X and one larger bivalent. Orthemis nodiplaga exhibits the largest chromosome number of the order, 2n=41, n=20+X and small chromosomes. Orthemis ambinigra shows a reduced complement, 2n=12, n=5+neo-XY, large-sized chromosomes, and a homomorphic sex bivalent. Fusions and fragmentations are the main evolutionary mechanisms in Odonata, as well as in other organisms with holokinetic chromosomes. Orthemis nodiplaga would have originated by nine autosomal fragmentations from the ancestral karyotype of the genus (2n=22A+X in males). We argue that the diploid number 23 in Orthemis has a secondary origin from the ancestral karyotype of family Libellulidae (2n=25). The complement of O. ambinigra would have arisen from five autosomal fusions and the insertion of the X chromosome into a fused autosome. C-banding and DAPI/CMA3 staining allowed the identification of the sexual bivalent, which revealed the presence of constitutive heterochromatin. We propose that the chromosome with intermediate C-staining intensity and three medial heterochromatic regions corresponds to the neo-Y and that the neo-system of this species has an ancient evolutionary origin. Moreover, we discuss on the mechanisms involved in the karyotypic evolution of this genus, the characteristics of the neo sex-determining systems and the patterns of heterochromatin distribution, quantity and base pair richness.Fil: Mola, Liliana Maria. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Ecología, Genética y Evolución. Laboratorio de Citogenética y Evolución; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Fourastié, María Florencia. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Ecología, Genética y Evolución; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Agopian, Silvia Susana. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Ecología, Genética y Evolución. Laboratorio de Citogenética y Evolución; Argentin

    Sex-Linked Chromosome Heterozygosity in Males of Tityus confluens (Buthidae): A Clue about the Presence of Sex Chromosomes in Scorpions

    Get PDF
    Scorpions of the genus Tityus show holokinetic chromosomes, achiasmatic male meiosis and an absence of heteromorphic sex chromosomes, like all Buthidae. In this work, we analysed the meiotic behaviour and chromosome rearrangements of a population of the scorpion Tityus confluens, characterising the cytotypes of males, females and embryos with different cytogenetic techniques. This revealed that all the females were structural homozygotes, while all the males were structural heterozygotes for different chromosome rearrangements. Four different cytotypes were described in males, which differed in chromosome number (2n = 5 and 2n = 6) and meiotic multivalent configurations (chains of four, five and six chromosomes). Based on a detailed mitotic and meiotic analysis, we propose a sequence of chromosome rearrangements that could give rise to each cytotype and in which fusions have played a major role. Based on the comparison of males, females and a brood of embryos, we also propose that the presence of multivalents in males and homologous pairs in females could be associated with the presence of cryptic sex chromosomes, with the male being the heterogametic sex. We propose that the ancestral karyotype of this species could have had homomorphic XY/XX (male/female) sex chromosomes and a fusion could have occurred between the Y chromosome and an autosome.Fil: Adilardi, Renzo Sebastián. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Ecología, Genética y Evolución de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Ecología, Genética y Evolución de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones Biomédicas. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones Biomédicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Ecología, Genética y Evolución. Laboratorio de Citogenética y Evolución; ArgentinaFil: Ojanguren Affilastro, Andres Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Museo Argentino de Ciencias Naturales ; ArgentinaFil: Mola, Liliana Maria. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Ecología, Genética y Evolución de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Ecología, Genética y Evolución de Buenos Aires; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Ecología, Genética y Evolución. Laboratorio de Citogenética y Evolución; Argentin

    Cromosomas sexuales : cien años y una historia

    Get PDF
    Fil: Mola, Liliana María. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Ecología, Genética y Evolución. Laboratorio de Citogenética y Evolución; Argentina.Fil: Rodríguez Gil, Sergio Gustavo. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Ecología, Genética y Evolución. Laboratorio de Citogenética y Evolución; Argentina.Fil: Rebagliati, Pablo Javier. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Ecología, Genética y Evolución. Laboratorio de Citogenética y Evolución; Argentina.¿Qué determina que un organismo presente características femeninas o masculinas? ¿Qué papel\ncumplen los cromosomas en esta determinación? ¿Todos los organismos siguen el mismo patrón de\ndeterminación? En 1905, Edmun Wilson y Netti Stevens aportaron las primeras evidencias para dar\nrespuesta a estos interrogantes, que actualmente son parte esencial del desarrollo de las\ninvestigaciones sobre los mecanismos de determinación del sexo. Lo que sigue a continuación es la\nhistoria que hace cien años marcó la asociación entre la determinación del sexo y los cromosomas X e\nY

    On the Origin of Neo-Sex Chromosomes in the Neotropical Dragonflies Rhionaeschna bonariensis and R. planaltica (Aeshnidae, Odonata)

    Get PDF
    Odonata have holokinetic chromosomes. About 95% of species have an XX/X0 sex chromosome system, with heterogametic males. There are species with neo-XX/neo-XY sex chromosomes resulting from an X chromosome/autosome fusion. The genus Rhionaeschna includes 42 species found in the Americas. We analyzed the distribution of the nucleolar organizer region (NOR) using FISH with rDNA probes in Rhionaeschna bonariensis (n = 12 + neo-XY), R. planaltica (n = 7 + neo-XY), and Aeshna cyanea (n = 13 + X0). In R. bonariensis and A. cyanea, the NOR is located on a large pair of autosomes, which have a secondary constriction in the latter species. In R. planaltica, the NOR is located on the ancestral part of the neo-X chromosome. Meiotic analysis and FISH results in R. planaltica led to the conclusion that the neo-XY system arose by insertion of the ancestral X chromosome into an autosome. Genomic in situ hybridization, performed for the first time in Odonata, highlighted the entire neo-Y chromosome in meiosis of R. bonariensis, suggesting that it consists mainly of repetitive DNA. This feature and the terminal chiasma localization suggest an ancient origin of the neo-XY system. Our study provides new information on the origin and evolution of neo-sex chromosomes in Odonata, including new types of chromosomal rearrangements, NOR transposition, and heterochromatin accumulation.Fil: Mola, Liliana Maria. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Ecología, Genética y Evolución de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Ecología, Genética y Evolución de Buenos Aires; ArgentinaFil: Vrbová, Iva. No especifíca;Fil: Tosto, Daniela Sandra. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación en Ciencias Veterinarias y Agronómicas. Instituto de Agrobiotecnología y Biología Molecular. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Agrobiotecnología y Biología Molecular; ArgentinaFil: Zrzavá, Magda. University of South Bohemia; República ChecaFil: Marec, František. No especifíca

    Meiotic Analysis of Gomphidae Species Sheds Light on the Large X Chromosome of the Family (Anisoptera, Odonata)

    Get PDF
    In most Anisoptera families, the modal diploid number is 25 in males (24 autosomes + X), and the X chromosome is one of the smallest elements of the complement. The family Gomphidae is an exception, as it has a modal diploid number of 23 (22 + X), and the X chromosome is the largest of the complement and of medium-to-large size in many species. We studied the meiosis of three gomphid species from Argentina: Aphylla cf. distinguenda (Campion, 1920), Phyllocycla propinqua Belle, 1972 and Phyllocycla sp. Chromosome number is 2n = 23, n = 11 + X, except for Phyllocycla propinqua, showing n = 10 + X. The X chromosome of these species is medium-sized and presents heteropyknotic blocks of different sizes. Despite the small number of gomphid species analysed, there is a clear trend of increasing size of the X chromosome with the increasing amount of heterochromatin. Our results, together with those from the literature, suggest that its large size might have been due to a progressive accumulation of repetitive DNA and heterochromatinisation and not to fusion, as previously suggested. This led us to propose that the ancestral number coincided with the modal number of Gomphidae. A revision of the derived sex-determining systems in Odonata is also provided.Fil: Mola, Liliana Maria. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Ecología, Genética y Evolución de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Ecología, Genética y Evolución de Buenos Aires; ArgentinaFil: Rebagliati, Pablo Javier. Universidad Nacional de Entre Ríos; ArgentinaFil: Fourastié, María Florencia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Ecología, Genética y Evolución de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Ecología, Genética y Evolución de Buenos Aires; ArgentinaFil: Agopian, Silvia S.. No especifíca

    Cytogenetic analysis on geographically distant parthenogenetic populations of Tityus trivittatus Kraepelin, 1898 (Scorpiones, Buthidae): karyotype, constitutive heterochromatin and rDNA localization

    Get PDF
    Tityus trivittatus Kraepelin, 1898 is the most medically important scorpion species of Argentina, and parthenogenetic populations are present in the major cities of this country. We performed a detailed cytogenetic analysis of specimens of three synanthropic parthenogenetic populations, all distant about 900 km from each other, using Ag-NOR, C-banding, DAPI/CMA3 staining and FISH with autologous 28S rDNA probes. The karyotype of females and embryos from the three populations showed 2n=6, with two large and four middle-sized holokinetic chromosomes. Constitutive heterochromatin was found in terminal and interstitial location and its pattern allowed the identification of three chromosome pairs. NORs were found on the terminal heterochromatic region of one pair of middle-sized chromosomes. The use of fluorochromes to characterize heterochromatin showed the absence of GC-rich heterochromatin and a low and variable number of AT-rich heterochromatic regions. We propose that a possible explanation for the lack of karyotypic variation between these geographically distant populations could be a recent colonization of urban areas by human means of synanthropic specimens from a single lineage of northeastern Argentina.Fil: Adilardi, Renzo Sebastián. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Ecología, Genética y Evolución de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Ecología, Genética y Evolución de Buenos Aires; ArgentinaFil: Ojanguren Affilastro, Andres Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Pque. Centenario. Museo Argentino de Ciencias Naturales "bernardino Rivadavia". Departamento de Invertebrados. Area de Entomologia; ArgentinaFil: Marti, Dardo Andrea. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Biología Subtropical. Instituto de Biología Subtropical - Nodo Posadas | Universidad Nacional de Misiones. Instituto de Biología Subtropical. Instituto de Biología Subtropical - Nodo Posadas; ArgentinaFil: Mola, Liliana Maria. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Ecología, Genética y Evolución de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Ecología, Genética y Evolución de Buenos Aires; Argentin

    Meiotic studies in Dysdercus Guerin Meneville 1831 (Heteroptera: Pyrrhocoridae) : I. Neo-XY in Dysdercus albofasciatus Berg 1878, a new sex chromosome determining system in Heteroptera

    Get PDF
    The genus Dysdercus Guerin Meneville 1831 represents the only taxon within the family Pyrrhocoridae in the New World. Based on morphological features, it has been suggested that American species derived from immigrants from the Old World, most probably from the Ethiopian Region. So far, 10 species from Dysdercus, including six species from the Old World and four species from the Neotropical Region have been cytogenetically analyzed. As is characteristic of Heteroptera, they possess holokinetic chromosomes and a prereductional type of meiosis. While the X1X20 sex chromosome system has been reported in all cytologically analyzed species of Dysdercus from the Old World, the system X0 has been found in all but one species from the New World, regardless of the number of autosomes in the complement. In the present study the male meiosis of D. Albofasciatus Berg 1878 was studied in specimens from four different populations from Argentina. The diploid chromosome number was found to be 2n = 10 + neo-XY. The neo-X shows at each subterminal region a positively heteropycnotic and DAPI-bright segment which corresponds to the ancestral X-chromosome. The origin of this neo-XY system involved, most probably, a subterminal insertion of the ancestral X chromosome in an autosome, followed by a large inversion, which included part of the original X chromosome.Facultad de Ciencias Naturales y Muse

    Meiotic studies in Largus rufipennis (Castelnau) (Largidae, Heteroptera). II: reciprocal translocation heterozygosity

    Get PDF
    Specimens of Largus rufipennis (Castelnau) (Largidae, Heteroptera) from three different populations from Argentina (Itaembe, Misiones Province; Tornquist and Ciudad Universitaria, Buenos Aires Province) were cytogenetically studied. Meiotic characteristics of these populations are compared with previous reports on the species. In the population from Itaembe, heterozygosity for a reciprocal translocation was encountered; this finding is the first report for this type of chromosome rearrangement in the order Heteroptera. The role of reciprocal translocations in karyotype evolution in organisms with holokinetic chromosomes is analyzed and discussed.Facultad de Ciencias Naturales y Muse

    Behaviour of ring bivalents in holokinetic systems : Alternative sites of spindle attachment in Pachylis argentinus and Nezara viridula (Heteroptera)

    Get PDF
    Heteropteran chromosomes are holokinetic; during mitosis, sister chromatids segregate parallel to each other but, during meiosis, kinetic activity is restricted to one pair of telomeric regions. This meiotic behaviour has been corroborated for all rod bivalents. For ring bivalents, we have previously proposed that one of the two chiasmata releases first, and a telokinetic activity is also achieved. In the present work we analyse the meiotic behaviour of ring bivalents in Pachylis argentinus (Coreidae) and Nezara viridula (Pentatomidae) and we describe for the first time the chromosome complement and male meiosis of the former (2n=12+2m+X0, pre-reduction of the X). Both species possess a large chromosome pair with a secondary constriction which is a nucleolus organizer region as revealed by in-situ hybridization. Here we propose a new mode of segregation for ring bivalents: when the chromosome pair bears a secondary constriction, it is not essential that one of the chiasmata releases first since these regions or repetitive DNA sequences adjacent to them become functional as alternative sites for microtubule attachment and they undertake chromosome segregation to the poles during anaphase I.Facultad de Ciencias Naturales y Muse
    corecore