8 research outputs found

    Transcriptional profiles for distinct aggregation states of mutant Huntingtin exon 1 protein unmask new Huntington's disease pathways

    Get PDF
    Huntington's disease is caused by polyglutamine (polyQ)-expansion mutations in the CAG tandem repeat of the Huntingtin gene. The central feature of Huntington's disease pathology is the aggregation of mutant Huntingtin (Htt) protein into micrometer-sized inclusion bodies. Soluble mutant Htt states are most proteotoxic and trigger an enhanced risk of death whereas inclusions confer different changes to cellular health, and may even provide adaptive responses to stress. Yet the molecular mechanisms underpinning these changes remain unclear. Using the flow cytometry method of pulse-shape analysis (PulSA) to sort neuroblastoma (Neuro2a) cells enriched with mutant or wild-type Htt into different aggregation states, we clarified which transcriptional signatures were specifically attributable to cells before versus after inclusion assembly. Dampened CREB signalling was the most striking change overall and invoked specifically by soluble mutant Httex1 states. Toxicity could be rescued by stimulation of CREB signalling. Other biological processes mapped to different changes before and after aggregation included NF-kB signalling, autophagy, SUMOylation, transcription regulation by histone deacetylases and BRD4, NAD+ biosynthesis, ribosome biogenesis and altered HIF-1 signalling. These findings open the path for therapeutic strategies targeting key molecular changes invoked prior to, and subsequently to, Httex1 aggregation.This work was supported by grants to DMH from the Australian Research Council (grant number FT120100039); grants/fellowships from the National Health and Medical Research Council Project to DMH (grant numbers APP1049458, APP1049459 and APP1102059), and a grant from the Hereditary Disease Foundation (USA). AJH is an NHMRC Principal Research Fellow

    Genetic testing for clinically suspected spinocerebellar ataxias: report from a tertiary referral centre in India

    No full text
    Spinocerebellar ataxias (SCAs) are a heterogeneous group of neurodegenerative syndromes, characterized by a wide range of muscular weakness and motor deficits, caused due to cerebellar degeneration. The prevalence of the syndromes of SCA varies across the world and is known to be linked to the instability of trinucleotide repeats within the high-end normal alleles, along with susceptible haplotype. We estimated sizes of the CAG or GAA repeat expansions at the SCA1, SCA2, SCA3, SCA12 and frataxin loci among 864 referrals of subjects to genetic counselling and testing (GCAT) clinic, National Institute of Mental Health and Neurosciences, Bengaluru, India, with suspected SCA. The most frequent mutations detected were SCA1 (n = 100 (11.6%)) and SCA2 (n = 98 (11.3%)) followed by SCA3 (n = 40 (4.6%)), FRDA (n = 20 (2.3%)) and SCA12 (n = 8 (0.9%))

    Huntingtin Inclusions Trigger Cellular Quiescence, Deactivate Apoptosis, and Lead to Delayed Necrosis

    No full text
    Competing models exist in the literature for the relationship between mutant Huntingtin exon 1 (Httex1) inclusion formation and toxicity. In one, inclusions are adaptive by sequestering the proteotoxicity of soluble Httex1. In the other, inclusions compromise cellular activity as a result of proteome co-aggregation. Using a biosensor of Httex1 conformation in mammalian cell models, we discovered a mechanism that reconciles these competing models. Newly formed inclusions were composed of disordered Httex1 and ribonucleoproteins. As inclusions matured, Httex1 reconfigured into amyloid, and other glutamine-rich and prion domain-containing proteins were recruited. Soluble Httex1 caused a hyperpolarized mitochondrial membrane potential, increased reactive oxygen species, and promoted apoptosis. Inclusion formation triggered a collapsed mitochondrial potential, cellular quiescence, and deactivated apoptosis. We propose a revised model where sequestration of soluble Httex1 inclusions can remove the trigger for apoptosis but also co-aggregate other proteins, which curtails cellular metabolism and leads to a slow death by necrosis

    Summaries of oral sessions at the XXI World Congress of Psychiatric Genetics, Boston, Massachusetts, 17-21 October 2013: state of the field

    Full text link
    The XXI World Congress of Psychiatric Genetics (WCPG), sponsored by the International Society of Psychiatric Genetics (ISPG), took place in Boston, Massachusetts, on 17-21 October 2013. Approximately 900 participants gathered to discuss the latest findings in this rapidly advancing field. The following report was written by student travel awardees. Each was assigned one or more sessions as a rapporteur. This manuscript represents topics covered in most, but not all of the oral presentations during the conference, and contains some of the major notable new findings reported. (C) 2014 Wolters Kluwer Health vertical bar Lippincott Williams & Wilkins
    corecore