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ABBREVIATIONS 

Polyglutamine (PolyQ), Huntingtin (Htt), Htt Exon 1 (Httex1), Huntington’s Disease (HD), Pulse Shape 

Analysis (PulSA), Cells With Inclusions (i), Cells With Diffuse Httex1 (ni), Relative Fluorescence Units 

(RFU), Ingenuity Pathway Analysis (IPA), False Discovery Rate (FDR), Wild-Type (WT), Green 

Fluorescent Protein (GFP), Region Of Interest (ROI). 
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ABSTRACT 

Huntington’s disease is caused by polyglutamine (polyQ)-expansion mutations in the CAG tandem 

repeat of the Huntingtin gene. The central feature of Huntington’s disease pathology is the 

aggregation of mutant Huntingtin (Htt) protein into micrometer-sized inclusion bodies.  Soluble mutant 

Htt states are most proteotoxic and trigger an enhanced risk of death whereas inclusions confer 

different changes to cellular health, and may even provide adaptive responses to stress. Yet the 

molecular mechanisms underpinning these changes remain unclear.  Using the flow cytometry 

method of pulse-shape analysis (PulSA) to sort neuroblastoma (Neuro2a) cells enriched with mutant 

or wild-type Htt into different aggregation states, we clarified which transcriptional signatures were 

specifically attributable to cells before versus after inclusion assembly. Dampened CREB signalling 

was the most striking change overall and invoked specifically by soluble mutant Httex1 states.  

Toxicity could be rescued by stimulation of CREB signalling.  Other biological processes mapped to 

different changes before and after aggregation included NF-kB signalling, autophagy, SUMOylation, 

transcription regulation by histone deacetylases and BRD4, NAD+ biosynthesis, ribosome biogenesis 

and altered HIF-1 signalling.  These findings open the path for therapeutic strategies targeting key 

molecular changes invoked prior to, and subsequently to, Httex1 aggregation.   

 

Keywords:  Protein misfolding, amyloid, neurodegenerative disease, Huntington’s Disease 
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INTRODUCTION 

Protein misfolding and aggregation into amyloids underlies many of the major human 

neurodegenerative diseases, including Alzheimer’s, Parkinson’s, Huntington’s and motor neuron 

disease (1). In these diseases, the appearance of macroscopic intracellular protein aggregates known 

as inclusions form as a hallmark of disease development.  Huntington’s disease (HD) is one of the 

classic examples of the amyloid diseases involving intracellular protein aggregating into inclusions.  

HD involves an expansion of a CAG trinucleotide repeat sequence, encoding polyglutamine (polyQ), 

within exon 1 of huntingtin (Htt) beyond the disease threshold of 35 repeats (2). The polyQ expansion 

leads to a greatly enhanced capacity of the Htt exon 1 (Httex1) domain to aggregate into amyloid 

fibrils in vitro (3) and for N-terminal fragments similar in length to Httex1 to form microscopic inclusion 

bodies in pathology (4, 5). The link to disease from polyQ-expanded Httex1 has been well 

documented.  Namely, the transgenic expression of polyQ-expanded Httex1 is sufficient to produce a 

HD-like pathology in rodent and primate models (6-8) and confers toxicity in cell culture models as 

well (9).  As such Httex1 has been used extensively to model HD biology. 

An outstanding question remains as to the role of aggregation in pathogenesis.  Evidence increasingly 

suggests that cellular malfunctioning originates prior to aggregation of Htt into the inclusion body – 

indeed formation of inclusions seems to aid survival (reviewed in (10, 11)).  Therefore, soluble polyQ-

expanded Httex1 states (including monomers and oligomers) may directly confer cellular toxicity and 

that toxicity could become nullified as the soluble states are sequestered into the visible aggregates.  

The mechanisms mediating the origins of cellular toxicity and inclusion assembly remain to be 

properly elucidated.  

Until recently, it has not been straightforward to decipher the cellular changes arising from polyQ-

expanded Httex1 as it shifts from soluble states into the inclusion body because cell populations 

contain mixtures of cells enriched with Httex1 in different aggregation states. This heterogeneity 

prevents a clean delineation of effects attributable to mutation from aggregation state.  

We previously developed a flow cytometry based method (Pulse Shape Analysis: PulSA) to separate 

cells expressing polyQ-expanded Httex1 into two major groups: those enriched with Httex1 in 

inclusions (i) and those enriched with soluble Httex1 states (predominantly monomer) (ni) (12) (Fig 

1a).  This methodology provides a unique opportunity to explicitly understand how aggregation state 
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of Httex1 (or indeed any mutant protein that forms an inclusion) relates to molecular dysfunction.  

Therefore, in this study, we sought to comprehensively determine how the transcriptome is altered by 

Httex1 aggregation in a cell culture model that is both sensitive to mutant Httex1 toxicity and which 

can be robustly controlled for co-variates such as time and expression level.  We show that Httex1 

provides the most profound changes to the transcriptome prior to aggregation and that the toxicity can 

be accounted for by a sustained shutdown of baseline CREB signalling from soluble Httex1.   

MATERIALS AND METHODS 

DNA vectors and constructs.  pT-REx vectors (Life Technologies) encoding Httex1 with 25Q or 72Q 

polyQ sequence lengths were prepared as described previously (12, 13).  pGW1-based Httex1-

mCherry constructs were prepared as described previously (14).    

Cell culture. Neuro2a cells, obtained originally from the American Type Culture Collection, were 

maintained in Optimem medium (Life Technologies) supplemented with 10% v/v FCS, 1 mM 

glutamine, 200 U/ml penicillin and 200 μg/ml streptomycin in a humidified incubator with 5% v/v 

atmospheric CO2. Neuro2a cells were transiently transfected with the vectors using Lipofectamine 

2000 reagent (Life Technologies) using the manufacturer’s recommendations.   

Collection of cells by Pulse Shape Analysis, RNA extraction and sequencing. 48 h after 

transfection, cells were fluorescence-activated cell sorted using a BD FACS ARIA III cell sorter. In 

essence, the cells were gated for live cell population by SSC and FSC gates and then the ‘ni’ and ‘i' 

gates by PuLSA as described (12). To match for expression, cells were further gated to the same 

median GFP intensity of 2,200 RFU by varying the window of expression (Fig S1).  The 25Q and 72Q 

Httex1 constructs were transfected and sorted in parallel across four days and performed as four 

matched replicates.  50,000 cells were collected for each sample (25Q-ni, 72Q-ni and 72Q-i) and 

sorted directly into TRI-reagent (Zymo Research, Irvine, CA). For imaging, a parallel sample set was 

collected and imaged as described previously by confocal microscopy (12). Total RNA was purified 

with the Direct Zol RNA extraction kit (Zymo Research, Irvine, CA) and verified for quality and yield 

(greater than 1 μg and RNA Integrity number of > 9) using the Bioanalyzer 2100 and RNA 6000 Nano 

Kit (Agilent Technologies, Santa Clara, CA). rRNA was depleted and the library prepared per the 

manufacturer’s protocols (TruSeq, Illumina) for whole transcriptome sequencing using Illumina Hi-Seq 
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2000 (Illumina, San Diego, CA, USA). FastQC report generated from the RNA Sequencing analysis 

showed good per base quality scores. 

RNA sequence processing.  50 base pair paired-end reads with an average library size of 15 million 

tags with at least one reported alignment (~90% mapping rate) was obtained. The reads were 

mapped to the reference mouse genome (GRCm38/mm10) using Tophat2 (2.0.13) (15) aligner. The 

gene level read counts were obtained (Ensembl transcripts release 78) using Rsubread - 

featureCounts (v1.4.6-p1) (16) using RStudio (Version 0.99.1246) /R (Version 3.3.1).  

Differential expression analysis of RNA sequencing data. Differential expression analysis of RNA 

sequencing data was conducted using voom transformation and limma differential expression 

analysis pipeline in R-bioconductor (Version 3.3). Genes were first filtered if they did not have at least 

1 counts per million mapped fragments, in more than three libraries. Counts were converted to log2 

counts per million, normalized using the trimmed mean of M-values normalization method (17) and 

precision weighted with the 'voom' function of the limma package (v3.24.15) (18). A linear model was 

fitted to each gene with effects for the sample types (25Q-ni, 72Q-ni and 72Q-i) as well a further fixed 

effect for the four replicate batches that the samples were PuLSA sorted across four days. Empirical 

Bayes moderated t-statistics were used to assess differences in gene expression. Statistical tests for 

differences in expression levels were evaluated by comparing between the sample groups: i.e. the 

72Q-ni vs. 25Q-ni, 72Q-ni vs 72Q-i, 72Q-i vs 25Q-ni and total 72Q (72Q-i + 72Q-ni) vs.25Q. Genes 

were adjusted for multiple testing and significant genes were designated as having a false discovery 

rate (FDR) <0.05 using decideTest function in limma. The upregulated genes were labelled 1; 

downregulated genes -1; and not differentially expressed genes 0 (Table S1c). KEGG pathway 

analysis was performed with DAVID v6.8 using a minimum gene count of 10 and a modified Fisher 

Exact P-Value of <0.01 with FDR correction (19 , 20).  

STRING analysis. The differentially expressed genes between the 72Q-ni and 25Q-ni with FDR 

corrected p-values <0.05 and fold change of >2 were used to create a protein: protein interaction 

network with the STRING v.10 algorithm (21). Data were analysed with parameters including only 

experimentally obtained data and a medium confidence interaction score of 0.40. 1st shell interactors 

of no more than 5 proteins was used.  
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Upstream regulator analysis. Upstream regulator analysis was performed on the genes differentially 

expressed between the 72Q-ni and 25Q-ni with Ingenuity Pathway Analysis (IPA) (Qiagen). IPA 

compares gene expression in a dataset with lists of genes that are known to be regulated by specific 

upstream transcriptional regulators, to infer whether a regulator is likely to be activated or inhibited. 

Since there is a considerable overlap in the lists of gene regulated by different transcriptional 

regulators, multiple points along a pathway can be suggested as key regulators, which can lead to a 

significant redundancy in the analysis. In IPA, this effect is quantified by the activation z-score 

statistics, which increases or decreases depending on the inferred activation/inhibition state of an 

upstream regulator. Significance in IPA was attributed to upstream regulators that have an overlap p-

value of < 0.01 and an activation z-score of greater than 2 or less than −2.    

Heuristic post hoc analysis of gene expression data. Gene expression data were classified into 

different transcriptional signatures using significant results (FDR<0.05) obtained by decideTest 

function in limma on different comparisons. The transcription signature groups included genes with 

the criteria as described below (in both positive and negative directions (i.e –1 or 1) for each 

signature. Progressive fold change to determine the direction of expression change across 

aggregation states was calculated using the formula (fold change 72Q-ni vs 25Q-ni) * [Absolute(fold 

change of 72Q-i vs 25Q-ni  – fold change of 72Q-ni vs 25Q-ni)]. 

Gene expression signature Decide test 

72Q-ni vs. 

25Q-ni 

Decide test 

72Q-i vs. 

25Q-ni  

Decide test 

72Q-ni vs. 

72Q-i 

Progressive 

fold change 

Transcription signature group 1 1 1 0 – 

Transcription signature group 2 0 1 1 – 

Transcription signature group 3 1 1 1 >0 

Transcription signature group 4 1 0 – <0 

For each transcription signature group 1 the genes were subdivided into upregulated and 

downregulated gene lists with regard to direction of expression in 72Q-ni vs 25Q-ni comparison.  The 

genes which did not fall into the categories mentioned above were excluded from the analysis.   
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Network Analyst – Minimal interaction networks. The gene expression signatures were mapped to 

known protein: protein interaction networks using network analyst toolkit (22, 23).  In essence, genes 

in a transcriptome signature group were mapped to a validated network of all known binary protein: 

protein interactions. The network was trimmed to contain only proteins that connect the input genes. 

The most connected genes remaining in the network that had a degree centrality of >30 formed the 

hubs. The most locally well-connected subnetworks with a statistical threshold of Wilcoxson rank-sum 

P-values <0.05) were extracted as modules. 

R6/1 mouse tissue processing, RNA extraction and microarray analysis.  R6/1 hemizygote 

males (24) were obtained from the Jackson Laboratory (Bar Harbor, ME, USA) and bred with CBB6 

(CBAxC57/B6) F1 females to establish an R6/1 colony. Genotypes were determined by PCR (24) with 

genomic DNA obtained from toe clips. Wild-type (WT) and R6/1 HD male mice were collected after 

weaning at 3.5 weeks of age and transferred into standard mouse cage boxes, 10 cm × 16 cm × 31 

cm in size, in groups of 3–6. 

WT and HD mice were killed at 12 weeks of age by cervical dislocation between 9–11:30 am.  

Different experimental groups were randomly allocated into balanced batches to eliminate batch 

effects. Brains were removed, rinsed in PBS and placed on ice for no more than 5–10 minutes prior to 

dissection. Brains were bisected and striatum was dissected out. Samples were immediately frozen 

on dry ice and transferred to a –80 °C freezer for storage until required.  

Total RNA from the striatum was extracted using RNeasy Mini kits (Qiagen). On-column DNase 

clean-up was performed on all samples using RNase-Free DNase set (Qiagen). The concentration 

and integrity of the extracted total RNA present in the final eluates were determined using an Agilent 

Bioanalyser 2100. All the samples had a RIN of greater than 9.3. GeneChip Mouse Exon 1.0ST 

arrays (Affymetrix, Santa Clara, CA, USA) were used, with hybridization and scanning conducted by 

the Australian Genomics Research Facility (Parkville, Australia) per standard Affymetrix protocols, 

with appropriate quality control (QC).  

Microarray data was analysed using the limma package (v3.24.15) in R-bioconductor (Version 3.3). 

The arrray data was preprocessed and quality control was done using the oligo package . The 

normalization was done at the probe level using Robust Multi-Array Average method  in oligo (25). 

The probeset annotation was done using the Affymetrix mogene10 annotation data package (version 
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8.4.0) (26). The statistical testing of changes in gene expression of transgenic R6/1 HD mice was 

compared to wild-type littermates using a linear model in limma (Supplementary Table S2a). The 

pathways were obtained using IPA core analysis with gene changes attributed specifically to neuronal 

tissue in IPA knowledge base.  

Human caudate gene analysis. Previously published raw microarray data (27) was retrieved from 

the EBI Array Express database (28) (http://www.ebi.ac.uk/arrayexpress) under accession number E-

AFMX-6. The raw data was processed and normalized using the bioconductor affy package (v1.52.0) 

(29) with the Robust Multi-Array Average method (30) and differential expression was tested in limma 

(v3.24.15) in R-bioconductor (Version 3.3). Gene-set enrichment analyses were conducted using the 

caudate genes as the reference set and our cell-based RNA-seq data as the gene set with the Roast 

function in limma (31). 

Longitudinal live cell imaging. The cells were plated at a density of 1 105 cells/ well in a 24 well 

plate.  After 24 h, cells were co-transfected with 72Q-Httex1-mCherry, 25Q-Httex1-mCherry or 

mCherry alone and GFP using Lipofectamine 3000 reagent (Life Technologies). Media was refreshed 

6 h after transfection.  The GFP was used as a cellular tracer of death and proxy for Httex1 

expression level. After 24 h cells were imaged using a JuLI stage live cell imaging system with 

fluorescent images acquired at 15 min intervals for 96 h (Nanoentek, Seoul, South Korea).  Cells were 

tracked for visible aggregate formation and the time point of death (by loss of GFP fluorescence) with 

image processing tool Fiji (Version 2.0.0-rc-44) (32).  Survival curves were analyzed using Prism 

software.  Cells that drifted from focus were censored in the analysis.  Expression level was 

calculated by measuring mean GFP levels in an ROI within the cytosol. The cells included for analysis 

had a mean fluorescence ± 2 standard deviation of the sample with the lowest variance. P-values 

were determined using log-rank (Mantel Cox) test. For drug treatments, forskolin (Cayman Chemical) 

was added after transfection to a concentration of 0.5 μM, which corresponds to the EC50 dosage.  

CREB inhibitors SGC-CBP30 (20 nM) and I-CBP112 (150 nM) were added after transfection (Sigma-

Aldrich).  Both drugs were added at 6 h post transfection during media refreshment.   
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RESULTS & DISCUSSION 

Cell populations expressing matched Httex1 levels divided into those with inclusions versus 

those without 

Our model system was a mouse neuroblastoma cell line (Neuro2a), which is a widely used model for 

studying Htt-induced pathogenic mechanisms.  These cells were selectively vulnerable to toxicity of 

polyQ-expanded Httex1 (72Q) over the wild-type polyQ length (25Q) (both as fusions to mEmerald 

fluorescent protein (33)) (Fig 1b).  In accord with prior observations, the formation of inclusions 

repressed the rate of death relative to cells retaining exclusively diffuse mutant Httex1 (9).   

In transfected cell populations the levels of Httex1 and aggregation rates are heterogeneous (12).  To 

remove this heterogeneity and enrich for cells with aggregates versus those without we used PulSA 

(12). PulSA enabled the separation of cells with inclusions (i) from those without (ni) in non-expanded, 

wild-type (25Q) and expanded, mutant (72Q) forms of Httex1, using a gating strategy that matched 

expression levels across our three groups (25Q-ni, 72Q-ni and 72Q-i) (Fig 1c; Fig S1).  This strategy 

captured a snapshot of cells representing the extreme ends of the spectrum of aggregation states, 

and which enriches cell groups with greater than 90-95% fidelity (34, 35).   

The largest changes in the transcriptome are stimulated by soluble mutant Httex1 

Next-generation RNA sequencing (RNAseq) yielded 12,876 high abundance genes on four biological 

matched replicates. To first test whether our dataset yielded results in accord with previous HD 

datasets, we tested for differential expression between the disease like 72Q samples (72Q-ni+ 72Q-i) 

and 25Q-ni as control. Comparing these two groups with the previously described human caudate 

microarray data from HD brain (versus non-HD controls) (27) we observed 1,109 differentially 

expressed genes in common to both. The upregulated genes detected in mouse were found to be 

significantly enriched for upregulated expression in the human samples. That is, we took the 

significantly upregulated genes detected in our mouse study (n=428 genes) and used this as a gene 

set for testing with Roast (31) in the human study (FDR =0.01). These results are indicative of a 

general consistency in upregulated genes between our cell model and human caudate samples. 

As an additional test, we found that our 72Q samples treated as one group (72Q-ni+ 72Q-i) versus the 

25Q-ni group yielded several HD-relevant KEGG pathways (Supplementary Table S1a). This included 

DNA repair (36), p53 signalling (37) and RNA transport (38).  
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To understand how aggregation state affected transcription, we measured the differential expression 

patterns for all pair-wise comparisons between the three sample Httex1 groups: 25Q-ni, 72Q-ni and 

72Q-i.  The Httex1 72Q-ni versus the 25Q-ni comparison yielded changes to how soluble mutant 

Httex1 affected expression while the 72Q-i versus the 72Q-ni comparison assessed more specifically 

how aggregation of mutant Httex1 into inclusions affected expression (Fig 2). These analyses 

indicated that the largest and most significant changes occurred from mutant Httex1 when it was 

soluble prior to inclusion assembly.  Furthermore, most of the changes were sustained in cells with 

inclusions (Fig 2 and Table S1c).   

Inactivated CREB-CREM signalling is the most profound impact arising from soluble Httex1 

Next, we probed the dataset for clues as to how the transcriptional changes triggered by the soluble 

mutant Httex1 relate to mechanism of toxicity.  First, we performed a STRING network analysis (21) 

(on human protein counterparts) of the genes most altered in expression to see if they correlated with 

validated protein-protein interactions.  Of the 9 genes upregulated more than 2-fold in the 72Q-ni 

condition (versus 25Q-ni), 3 formed part of the CREB signalling network (NCOA3, MDM4 and 

RUNX2) (Fig 3a). CREB is a key transcription factor that has been previously implicated as defective 

in HD (39, 40, 41 , 42-45). Furthermore, CREB signalling has been suggested to be mediated by 

deactivation of CREB binding protein (CREBBP) activity through abnormal interactions with soluble 

Httex1 (44, 46-48).  There was no significant change in CREBBP or CREB transcript levels.   

We next sought to measure the extent to which the changes in transcriptome can be explained by 

alteration of CREB activity.  To do this we performed an unbiased Upstream Regulator Analysis using 

Ingenuity Pathway Analysis (IPA). The principle behind this analysis is to search for changes in 

transcription factor activity that accounts for the changes in downstream gene expression as 

represented by our dataset.  16 transcription factors were identified that are known to regulate the 

genes in our dataset.  Critically, only 2 of these transcription factors, CREB and the closely 

functionally related CREM, could explain the altered expression patterns of our data with high 

confidence by their inactivation (Fig 3b, Table S1b).  These data collectively suggest that CREB 

signalling defects are among the most pervasive of the changes in the transcriptome (including before 

and after aggregation) and that these effects are attributable to mutant Httex1 before aggregation.  
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To test for the in vivo relevance of these findings, we also examined the mRNA of R6/1 Httex1 

transgenic mouse (24) striatum tissue at a time point prior to motor onset (12 weeks of age) by 

microarray analysis.  Analysis of the gene expression differences in the R6/1 genotype (n=3) versus 

non-transgenic littermates (n=4) indicated CREB signalling (and related cAMP signalling) were in the 

top 5 pathways negatively impacted in an IPA canonical pathway analysis (Table S2a,b).   

Dampened CREB signalling explains the molecular basis of toxicity 

To further examine the importance of CREB inactivation in toxicity we performed survival curve 

analyses focusing on manipulating CREB signalling (Fig 3c).  Prior studies have found that deletion of 

CREB-CREM expression in postnatal forebrain results in extensive neurodegeneration reminiscent of 

HD pathology (42). Inhibition of CREB signalling with inhibitors SGC-CBP30 and I-CBP112, which 

target CREBBP and EP300 bromodomains with high specificity (49, 50), in our Neuro2a culture 

system led to a high death rate indicating that baseline CREB signalling is critical for cell survival (Fig 

3d).  Cells expressing mutant Httex1 were negatively impacted by inhibition of CREB signalling, as 

anticipated (Fig 3c). However, activation of CREB signalling with forskolin, which triggers downstream 

phosphorylation and activation of CREB (51), significantly rescued the toxicity caused by mutant 

Httex1 and had otherwise no effect on baseline survival rates in cells with the wild-type Httex1. 

Collectively, these results suggested that toxicity of soluble mutant Httex1 manifests predominately 

through impairment of baseline CREB signalling and that this be remedied by triggering the CREB 

signalling.  

Additional novel pathways unearthed as transcriptional signatures for Httex1 aggregation 

We next focused on extracting other patterns in the dataset using a transcriptional signature approach 

as shown in Fig 4a using a post hoc heuristic analysis.  These signatures can be used to make 

predictions about how cells respond to Httex1 aggregation state in both pathogenic and adaptive 

manners.  This analysis yielded hundreds of genes in each transcriptional signature group.  Features 

were extracted from this data using the Network analyst software (22), which links together genes 

based on their known protein-protein interactions. The most connected genes in the networks (set 

with a minimum threshold of 30 interactions) were identified as hub genes of interest (Table S3). 

Functional subnetworks (modules) that relate more discretely to biological functions were also 

identified using a Walktrap algorithm in Network analyst (Fig 4b).  The final list (as discussed below) 
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of modules and hub genes has an extensive overlap with established HD mechanisms.  There was 

also a strong overlay with CREB signalling, which suggests these modules are affected directly by the 

dampened CREB signalling response or are adaptive responses to counteract CREB signalling 

defects.   

We explain the key details of these modules below and provide a discussion of how they may connect 

to CREB signalling and HD biology (and expanded on in Supplementary Note 1).  This discussion 

outlines what we see are the key features of the data set and point to connections with established 

links to Huntington’s disease biology and other features of potential interest. 

Transcriptional signature 1:  This signature describes the changes invoked by soluble mutant Httex1 

and which have no further change when inclusions form. One explanation for this signature is to 

describe changes occurring as a result of toxic responses.  This may apply for the HDAC5 and BRD4 

modules, for which HDAC5 and BRD4 genes are chromatin modifiers that have been shown to 

influence CREB signalling, which are consistent with the broader changes seen in CREB signalling 

(52-54). HDAC proteins have also been previously linked to underlying HD pathogenesis (see 

Supplementary Note 1 for more discussion).  

Other modules are more likely to reflect responses to counter the toxic effects of Httex1. Such 

upregulated modules (named after the key genes in them) included HDAC5, BRD4, NAMPT, 

ribosome-associated proteins and GABARAP. GABARAP, ELAVL1 and SQSTM1 genes have roles in 

regulating macroautophagy and proteasomal-mediated degradation and have been shown to be 

involved in HD pathology (see Supplementary Note 1 for more discussion). Their upregulation thus 

may indicate attempted increased clearance mechanisms to cope with the toxic Httex1 response.  

However, for GABARAP the changes may also reflect a block in autophagy (discussed in more detail 

in Supplementary Note 1). NAMPT gene encodes the rate-limiting enzyme in NAD production, which 

is an essential cellular metabolite involved in energy production, redox homeostasis, Ca2+ signalling 

and post-translational modifications.  Prior work has shown that misfolded prion protein can reduce 

oxidised NAD (NAD+) levels (55), hence the upregulation of NAD+ may reflect a compensation 

response. Increased SUMOylation of Htt has been suggested to facilitate disaggregation of Htt, 

thereby releasing the soluble mutant Htt monomers and increasing neurotoxicity (56).  Hence 

reduction of SUMO pathways may indicate an adaptive response to aid sequestration of the soluble 

Httex1 states. 
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Transcriptional signature 2:  This signature describes the transcriptional changes that are only altered 

when inclusions form.  One possibility to explain this signature are the genes that change expression 

upon adaptation responses as inclusions form on the basis of prior work suggesting inclusions are 

actively formed to sequester toxic soluble protein states (9, 57, 58). Up-regulated modules include 

RELA, which is a subnetwork within the NF-κB signalling pathway that has been implicated in HD (59) 

and ribosomal associated protein module, which has functions in regulating ribosome biogenesis (60). 

As such their upregulation may be part of mechanisms to globally regulate protein translation.  Of 

note to the broader connection to CREB signalling alterations, CREB signalling regulates ribosomal 

protein production and aberrant production has been linked to ribosomal stress and apoptosis (61). 

Five modules were downregulated in this group. Within these modules, the PAXIP1 gene is involved 

in DNA repair and the CDK1 gene is involved in cell cycle re-entry.  Both have been previously linked 

to HD pathology and in toxicity (explained further in Supplementary Note 1).  A notable downregulated 

module was EP300.  The EP300 gene encodes a co-activator of CREB, which suggests this response 

is influenced by the broader deregulation of CREB signalling.  Also downregulated is the UBC 

module.  UBC encodes ubiquitin, which is involved in ubiquitin-proteasome mediated protein 

degradation.  This response is likely part of broader adaptation changes to protein folding stress 

(more details are explained in Supplementary Note 1).   

Transcriptional signature 3:  This signature describes a change of transcript levels triggered by 

soluble Httex1 and extended further when inclusions form.  This signature may reflect a sustained or 

delayed toxicity response; or alternatively a delayed or amplifying adaptive response as aggregation 

proceeds. Upregulated modules included NF-kB pathway (more generally than the RELA subset).  

This may reflect a compensation response since increased NF-kB signalling aids cell survival (62).  

Down-regulated modules included KIAA0101, HNF4A and MYC. KIAA0101 gene is involved in 

oxidative stress mediated DNA repair (63), HNF4A gene is involved in the metabolic regulation of 

glucose and lipids has been shown to be impaired in HD (64, 65) and MYC gene is a master regulator 

of protein transcription (and indirectly translation) and is influenced by CREB signalling (66). Thus, the 

changes in MYC likely reflect an amplifying adaptive response to bypass defects in CREB signalling 

as well as aiding cell survival by reducing translation under stressed conditions. 

Transcriptional signature 4:  This signature describes transcript changes invoked by soluble 72Q 

Httex1 that then return to control levels when inclusions form.  This signature could reflect genes that 
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are specifically rebalanced by aggregation in adaptive responses from inclusion formation.  The 

upregulated modules included STAT3, of which the STAT3 gene works in concert with NF-κB to 

regulate cell survival (67) and VHL, which directs Hypoxia-inducible factor-1 (HIF-1) for degradation 

via the ubiquitin-proteasome system and suppresses apoptosis. The sole down-regulated module 

included HSP90AA. HSP90 and related chaperones link closely to systems regulating protein folding, 

degradation and potentially disaggregation (68). 

Conclusions 

In conclusion, our study has enabled the first comprehensive view of how aggregation state of Httex1 

influences the transcriptome in HD.  Most noteworthy was the finding that soluble Httex1 propagates 

the most substantial changes in the transcriptome by blocking CREB signalling, which supports an 

extensive body of work indicating CREB signalling defects as central to HD pathomechanisms.  

Importantly, our study is the first to our knowledge that has been able to identify this defect as 

specifically attributed to the soluble mutant Httex1 and in context of the system-wide transcriptional 

changes.  Indeed, the blockage of CREB signalling seemingly accounted for the majority of the 

toxicity caused by Httex1.  As such, our data reaffirms CREB signalling as a highly attractive 

therapeutic target in Huntington’s disease.  This conclusion is supported findings that an 

enhancement of CREB levels via Sirt1 overexpression in the R6/2 HD mouse model can improve 

survival time (69).  In contrast, the formation of inclusions offers (by comparison) trivial changes in the 

magnitude of transcriptional changes.  Moreover, of the changes observed, the signatures point to 

those involved in adapting to defects in CREB signalling such as the rewiring of CREB-related signally 

networks to compensate for CREB deficiency.  In addition, other changes associated with protein 

homeostasis responses were also documented in these signatures.   

Another feature of our dataset was the pronounced enrichment of genes encoding polyQ. Five of the 

9 genes upregulated more than 2-fold by the soluble polyQ-expanded Httex1 contained endogenous 

polyQ sequences suggesting that polyQ-expanded Htt may more broadly deactivate by soluble co-

aggregation these proteins leading to their compensatory upregulation (Fig 2).  Three of the 

upregulated polyQ-encoding genes are involved in CREB signalling, which may explain why CREB 

signalling appears to be the most profoundly affected pathway (Fig 3a).     
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Our new roadmaps of the transcriptional changes associated with Htt aggregation states offer a 

powerful resource to understanding how Httex1, notably the soluble forms, propagates toxicity as well 

as in yielding CREB signalling as a therapeutic target for further investigation. 
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LEGENDS TO FIGURES 

Fig 1: Strategy to separate cells into populations enriched with polyQ-expanded Httex1 in 

distinct aggregation states.  a) Pulse Shape Analysis (PulSA) by flow cytometry can separate cell 

populations heterogeneous in aggregation state.  b) Neuro2a cells that form inclusions live longer 

than those that do not.  Shown are Kaplan-Meier survival curves tracked by longitudinal imaging of 

Httex1-Emerald fusions from 20 h after transfection. P-values refer to log-rank test (Mantel Cox) on 

survival curves. c) Flow cytograms showing the PulSA gating strategy to sort the mixed cell 

populations for analysis by whole transcriptome analysis.  Shown are gates for i and ni and for 

matched expression (red; Further details in Fig S1).   The images show representative cells collected 

by sorting flow cytometry and imaged for GFP fluorescence by confocal microscopy.  Scale bar, 20 

μm. 

Fig 2: Volcano plots of gene expression changes attributable to aggregation states of Httex1.  

Shown are comparisons between the three treatment groups: cells lacking visible aggregates but 

differing in polyQ length (25Q-ni and 72Q-ni cells) and cells with expanded polyQ length that differ in 

aggregation state (72Q-i).  Genes with a FDR less than P=0.05 are shown in red.  Genes with greater 

than 2-fold change are shown in blue.  Genes encoding proteins with an intrinsic native polyQ 

sequence have orange labels.   

Fig 3: CREB signaling is dampened by soluble mutant Httex1 and explains the major source of 

toxicity to Neuro2a cells.  a) A protein-protein interacting network of the genes enriched more than 

2-fold in cells enriched with soluble mutant Httex1.  Shown are STRING (v10) validated protein-

protein interactions of genes corresponding to those enriched in the dataset.  The network was built to 

include first shell interactors (i.e. interacting proteins corresponding to genes not enriched in the 

dataset).  b) Upregulator analysis (Ingenuity) to explain how changes in differential expression 

patterns of our dataset relate to changed protein activity of transcription factors. The inner circle 

shows transcription factors that control genes seen differentially expressed in the dataset.  The outer 

ring shows the key genes in our dataset that are targets of the transcription factors and their patterns 

of expression.  c) Schematic of CREB signaling activity and role of activator forskolin.  d) Effect of 

upregulating (with forskolin) or suppressing (with inhibitors CREB signaling SGC-CBP30 and I-

CBP112) on survival curves. P-values corresponds to log-rank (Mantel Cox) tests. 
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Fig.4:  Transcriptional signatures for Httex1 aggregation state. a) Shown is our model for how 

transcriptome data can be mapped to the changes attributable to mutation, and then aggregation into 

inclusions.  Data are filtered into transcriptional signatures as represented by the bar graphs, based 

on changes with FDR <0.05 (n=4).  b) Shown are functional modules (with Wilcoxson rank-sum P-

values <0.05), and their designated names, extracted from protein: protein interaction networks 

corresponding to all the genes in each transcriptional signature using Network Analyst Walktrap 

software. These modules can be upregulated or downregulated in the transcriptional signature (and 

the direction is shown). Each module shows the genes (points) and their connections.  The most 

connected genes in the modules are labelled.  
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Fig. 2 
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Fig. 3 

  

ACCEPTED MANUSCRIPT



AC
CE

PT
ED

 M
AN

US
CR

IP
T

 

30 
 

 

 

 

 

 

Fig. 4 
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Highlights 

 Transcriptional changes due to aggregation of mutant Httex1 are described 

 The largest changes in the transcriptome are stimulated by soluble mutant 

Httex1 

 Inactivated CREB signalling is the most profound impact arising from soluble 

Httex1 

 Dampened CREB signalling explains the molecular basis of toxicity 

 Additional pathways unearthed as transcriptional signatures for Httex1 

aggregation 
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