4 research outputs found

    Is salinity an obstacle for biological invasions?

    Get PDF
    Invasions of freshwater habitats by marine and brackish species have become more frequent in recent years with many of those species originating from the Ponto-Caspian region. Populations of Ponto-Caspian species have successfully established in the North and Baltic Seas and their adjoining rivers, as well as in the Great Lakes-St. Lawrence River region. To determine if Ponto-Caspian taxa more readily acclimatize to and colonize diverse salinity habitats than taxa from other regions, we conducted laboratory experiments on 22 populations of eight gammarid species native to the Ponto-Caspian, Northern European and Great Lakes-St. Lawrence River regions. In addition, we conducted a literature search to survey salinity ranges of these species worldwide. Finally, to explore evolutionary relationships among examined species and their populations, we sequenced the mitochondrial cytochrome c oxidase subunit I gene (COI) from individuals used for our experiments. Our study revealed that all tested populations tolerate wide ranges of salinity, however, different patterns arose among species from different regions. Ponto-Caspian taxa showed lower mortality in fresh water, while Northern European taxa showed lower mortality in fully marine conditions. Genetic analyses showed evolutionary divergence among species from different regions. Due to the geological history of the two regions, as well as high tolerance of Ponto-Caspian species to fresh water, whereas Northern European species are more tolerant of fully marine conditions, we suggest that species originating from the Ponto-Caspian and Northern European regions may be adapted to freshwater and marine environments, respectively. Consequently, the perception that Ponto-Caspian species are more successful colonizers might be biased by the fact that areas with highest introduction frequency of NIS (i.e., shipping ports) are environmentally variable habitats which often include freshwater conditions that cannot be tolerated by euryhaline taxa of marine origin

    Are Ponto-Caspian species able to cross salinity barriers? A case study of the gammarid Pontogammarus maeoticus

    Get PDF
    Recently, Ponto-Caspian species (i.e., area of Azov, Black, and Caspian Seas) have invaded brackish and freshwater habitats of the North and Baltic Seas and the Laurentian Great Lakes in much higher numbers than expected based on shipping frequency and environmental conditions among these regions. Therefore, it has been suggested that Ponto-Caspian species may have inherent advantages over other species in colonizing new habitats, or that they are of freshwater origin. Artificial selection offers the possibility to investigate phenotypic plasticity, shifts in environmental tolerance, and heritability of environmentally sensitive traits; therefore, in this study, we conducted artificial selection experiments on Ponto-Caspian amphipod Pontogammarus maeoticus collected from 10 PSU to evaluate adaptation capacity of this species to different salinities, and to shed additional light on a possible freshwater origin of Ponto-Caspian invaders. Our results indicated that selection to lower salinity than that of the population's ambient salinity is possible within few generations due to a likely existence of standing polymorphic variation for selection to act on. In contrast, selection to higher salinity was unsuccessful because the phenotypic variation was mainly caused by environmental variance and therefore might depend on new mutations. Consequently, the results of our study suggest that the tested species might be of freshwater origin and lacks necessary genetic background for adaptation to fully marine conditions. Further selection studies using more species and populations, as well as molecular techniques, should be conducted to elucidate if other Ponto-Caspian invaders are of freshwater origin as well

    Are juveniles as tolerant to salinity stress as adults? A case study of Northern European, Ponto‐Caspian and North American species

    No full text
    Aim: Global biodiversity and ecosystems are highly impacted by anthropogenic activities, such as climate change and introduction of non-indigenous species. As numerous species from the Ponto-Caspian region have established in the North and Baltic Seas, as well as in the Laurentian Great Lakes, there have been large number of studies examining environmental tolerance of these species to determine their future potential to spread. However, many of those studies were conducted only on adult stages, while neglecting the possibility that early life history stages might not be equally resilient. Location: Northern European, Ponto-Caspian and North American regions. Methods: To determine whether juveniles would demonstrate the same environmental tolerance as their parents, we examined the salinity tolerance of adults and juveniles of one Northern European (Gammarus salinus), one Ponto-Caspian (Pontogammarus maeoticus) and one North American species (Gammarus tigrinus). Additionally, we compared our study to that of Paiva et al. (Global Change Biology, 24, 2018, 2708), who tested the salinity tolerance of the same species using only adults. Results: Our study determined that both adults and juveniles of all three species tolerated wide ranges of salinity, with juveniles of G. salinus tolerating only slightly narrower salinity range than their parents, while those of P. maeoticus and G. tigrinus much narrower range. Additionally, we determined better survival and higher growth rates of juveniles of G. salinus in higher salinities and better survival of P. maeoticus in lower salinities. Main conclusions: Based on juvenile salinity tolerance, our study further supported findings of Paiva et al. (2018), where Northern European species may be adapted to marine, while Ponto-Caspian to lower saline and freshwater environments. The North American species is probably adapted to intermediate salinities. As juveniles do not tolerate the same salinity stress as adults, we emphasize the importance of testing all life history stages when predicting species resilience to environmental stressors
    corecore