24 research outputs found

    Cohort profile: The Clinical and Multi-omic (CAMO) cohort, part of the Norwegian Women and Cancer (NOWAC) study

    Get PDF
    Introduction - Breast cancer is the most common cancer worldwide and the leading cause of cancer related deaths among women. The high incidence and mortality of breast cancer calls for improved prevention, diagnostics, and treatment, including identification of new prognostic and predictive biomarkers for use in precision medicine. Material and methods - With the aim of compiling a cohort amenable to integrative study designs, we collected detailed epidemiological and clinical data, blood samples, and tumor tissue from a subset of participants from the prospective, population-based Norwegian Women and Cancer (NOWAC) study. These study participants were diagnosed with invasive breast cancer in North Norway before 2013 according to the Cancer Registry of Norway and constitute the Clinical and Multi-omic (CAMO) cohort. Prospectively collected questionnaire data on lifestyle and reproductive factors and blood samples were extracted from the NOWAC study, clinical and histopathological data were manually curated from medical records, and archived tumor tissue collected. Results - The lifestyle and reproductive characteristics of the study participants in the CAMO cohort (n = 388) were largely similar to those of the breast cancer patients in NOWAC (n = 10 356). The majority of the cancers in the CAMO cohort were tumor grade 2 and of the luminal A subtype. Approx. 80% were estrogen receptor positive, 13% were HER2 positive, and 12% were triple negative breast cancers. Lymph node metastases were present in 31% at diagnosis. The epidemiological dataset in the CAMO cohort is complemented by mRNA, miRNA, and metabolomics analyses in plasma, as well as miRNA profiling in tumor tissue. Additionally, histological analyses at the level of proteins and miRNAs in tumor tissue are currently ongoing. Conclusion - The CAMO cohort provides data suitable for epidemiological, clinical, molecular, and multi-omics investigations, thereby enabling a systems epidemiology approach to translational breast cancer research

    Plasma microRNAs as biomarkers of pancreatic cancer risk in a prospective cohort study

    Get PDF
    Accepted manuscript version. Published version available in International Journal of Cancer 2017, 141 (5):905–915 .Noninvasive biomarkers for early pancreatic ductal adenocarcinoma (PDAC) diagnosis and disease risk stratification are greatly needed. We conducted a nested case-control study within the Prospective Investigation into Cancer and Nutrition (EPIC) cohort to evaluate prediagnostic microRNAs (miRs) as biomarkers of subsequent PDAC risk. A panel of eight miRs (miR-10a, -10b, -21-3p, -21-5p, -30c, -106b, -155 and -212) based on previous evidence from our group was evaluated in 225 microscopically confirmed PDAC cases and 225 controls matched on center, sex, fasting status and age/date/time of blood collection. MiR levels in prediagnostic plasma samples were determined by quantitative RT-PCR. Logistic regression was used to model levels and PDAC risk, adjusting for covariates and to estimate area under the receiver operating characteristic curves (AUC). Plasma miR-10b, -21-5p, -30c and -106b levels were significantly higher in cases diagnosed within 2 years of blood collection compared to matched controls (all p-values <0.04). Based on adjusted logistic regression models, levels for six miRs (miR-10a, -10b, -21-5p, -30c, -155 and -212) overall, and for four miRs (-10a, -10b, -21-5p and -30c) at shorter follow-up time between blood collection and diagnosis (≤5 yr, ≤2 yr), were statistically significantly associated with risk. A score based on the panel showed a linear dose-response trend with risk (p-value = 0.0006). For shorter follow-up (≤5 yr), AUC for the score was 0.73, and for individual miRs ranged from 0.73 (miR-212) to 0.79 (miR-21-5p)

    Steroid receptor coactivators, HER-2 and HER-3 expression is stimulated by tamoxifen treatment in DMBA-induced breast cancer

    Get PDF
    Background: Steroid receptor coactivators (SRCs) may modulate estrogen receptor (ER) activity and the response to endocrine treatment in breast cancer, in part through interaction with growth factor receptor signaling pathways. In the present study the effects of tamoxifen treatment on the expression of SRCs and human epidermal growth factor receptors (HERs) were examined in an animal model of ER positive breast cancer. Methods: Sprague-Dawley rats with DMBA-induced breast cancer were randomized to 14 days of oral tamoxifen 40 mg/kg bodyweight/day or vehicle only (controls). Tumors were measured throughout the study period. Blood samples and tumor tissue were collected at sacrifice and tamoxifen and its main metabolites were quantified using LC-MS/MS. The gene expression in tumor of SRC-1, SRC-2/transcription intermediary factor-2 (TIF-2), SRC-3/amplified in breast cancer 1 (AIB1), ER, HER-1, -2, -3 and HER-4, as well as the transcription factor Ets-2, was measured by real-time RT-PCR. Protein levels were further assessed by Western blotting. Results: Tamoxifen and its main metabolites were detected at high concentrations in serum and accumulated in tumor tissue in up to tenfolds the concentration in serum. Mean tumor volume/rat decreased in the tamoxifen treated group, but continued to increase in controls. The mRNA expression levels of SRC-1 (P=0.035), SRC-2/TIF-2 (P=0.002), HER-2 (P = 0.035) and HER-3 (P = 0.006) were significantly higher in tamoxifen treated tumors compared to controls, and the results were confirmed at the protein level using Western blotting. SRC-3/AIB1 protein was also higher in tamoxifen treated tumors. SRC-1 and SRC-2/TIF-2 mRNA levels were positively correlated with each other and with HER-2 (P≤0.001), and the HER-2 mRNA expression correlated with the levels of the other three HER family members (P<0.05). Furthermore, SRC-3/AIB1 and HER-4 were positively correlated with each other and Ets-2 (P<0.001). Conclusions: The expression of SRCs and HER-2 and -3 is stimulated by tamoxifen treatment in DMBA-induced breast cancer. Stimulation and positive correlation of coactivators and HERs may represent an early response to endocrine treatment. The role of SRCs and HER-2 and -3 should be further studied in order to evaluate their effects on response to long-term tamoxifen treatment

    Differential expression of the miR-17-92 cluster and miR-17 family in breast cancer according to tumor type; results from the Norwegian Women and Cancer (NOWAC) study

    Get PDF
    Background - MicroRNAs (miRNAs) are promising biomarkers due to their structural stability and distinct expression profile in various cancers. We wanted to explore the miRNA expression in benign breast tissue and breast cancer subgroups in the Norwegian Women and Cancer study. Methods - Specimens and histopathological data from study participants in Northern Norway diagnosed with breast cancer, and benign tissue from breast reduction surgery were collected. Main molecular subtypes were based on surrogate markers; luminal A (ER+ and/or PR+, HER2− and Ki67 ≤ 30%), luminal B (ER+ and/or PR+, HER2− and Ki67 > 30% or ER+ and/or PR+ and HER2+), HER2 positive (ER− and PR− and HER2+) and triple-negative (ER−, PR− and HER2−). RNA was extracted from formalin-fixed paraffin-embedded (FFPE) tissue, and miRNAs were successfully analyzed in 102 cancers and 36 benign controls using the 7th generation miRCURY LNA microarray containing probes targeting all human miRNAs as annotated in miRBASE version 19.0. Validation with RT-qPCR was performed. Results - On average, 450 miRNAs were detected in each sample, and 304 miRNAs were significantly different between malignant and benign tissue. Subgroup analyses of cancer cases revealed 23 miRNAs significantly different between ER+ and ER− tumors, and 47 miRNAs different between tumors stratified according to grade. Significantly higher levels were found in high grade tumors for miR-17-5p (p = 0.006), miR-20a-5p (p = 0.007), miR-106b-5p (p = 0.007), miR-93-5p (p = 0.007) and miR-25-3p (p = 0.015) from the paralogous clusters miR-17-92 and miR-106b-25. Expression of miR-17-5p (p = 0.0029), miR-20a-5p (p = 0.0021), miR-92a-3p (p = 0.011) and miR-106b-5p (p = 0.021) was significantly higher in triple-negative tumors compared to the rest, and miR-17-5p and miR-20a-5p were significantly lower in luminal A tumors. Conclusions - miRNA expression profiles were significantly different between malignant and benign tissue and between cancer subgroups according to ER− status, grade and molecular subtype. miRNAs in the miR-17-92 cluster and miR-17 family were overexpressed in high grade and triple-negative tumors associated with aggressive behavior. The expression and functional role of these miRNAs should be further studied in breast cancer to explore their potential as biomarkers in diagnostic pathology and clinical oncology

    Expression and function of the miR-143/145 cluster in vitro and in vivo in human breast cancer

    Get PDF
    MicroRNAs (miRNAs) are small non-coding RNAs that function as post-transcriptional regulators of gene expression and are dysregulated in cancer. Studies of miRNAs to explore their potential as diagnostic and prognostic markers are of great scientific interest. Here, we investigate the functional properties and expression of the miR-143/145 cluster in breast cancer (BC) in vitro and in vivo. The ER positive MCF7, the HER2 positive SK-BR-3, and the triple negative cell line MDA-MB-231 were used to assess cell proliferation and cell invasion. Expression of miRNA in 108 breast cancers in the Norwegian Women and Cancer Study and 44 benign tissue controls were analyzed by microarray and validated by RT-PCR. Further, in situ hybridization (ISH) was used to study the cellular and subcellular distribution of the miRNAs. In vitro, miR-143 promoted proliferation of MCF7 and MDA-MB-231 cells, whereas miR-145 and the cotransfection of both miRNAs inhibited proliferation in all three cell lines. The cells’ invasive capacity was reduced after transfection and cotransfection of the miRNAs. In line with the tumor suppressive functions in vitro, the expression of miR-143 and miR-145 was lower in malignant compared to benign breast tissue, and lower in the more aggressive tumors with higher tumor grade, loss of ER and the basal-like phenotype. ISH revealed miR-143 to be cytoplasmatic and predominantly expressed in luminal cells in benign tissue, whilst miR-145 was nuclear and with strong staining in myoepithelial cells. Both miRNAs were present in malignant epithelial cells and stromal fibroblasts in BC. This study demonstrates that miR-143 and -145 have functional properties and expression patterns typical for tumor suppressors, but the function is influenced by cellular factors such as cell type and miRNA cotransfection. Further, the nuclear functions of miR-145 should be explored for a more complete understanding of the complexity of miRNA regulation and function in BC

    Steroid receptor coactivators, HER-2 and HER-3 expression is stimulated by tamoxifen treatment in DMBA-induced breast cancer

    No full text
    Abstract Background Steroid receptor coactivators (SRCs) may modulate estrogen receptor (ER) activity and the response to endocrine treatment in breast cancer, in part through interaction with growth factor receptor signaling pathways. In the present study the effects of tamoxifen treatment on the expression of SRCs and human epidermal growth factor receptors (HERs) were examined in an animal model of ER positive breast cancer. Methods Sprague-Dawley rats with DMBA-induced breast cancer were randomized to 14 days of oral tamoxifen 40 mg/kg bodyweight/day or vehicle only (controls). Tumors were measured throughout the study period. Blood samples and tumor tissue were collected at sacrifice and tamoxifen and its main metabolites were quantified using LC-MS/MS. The gene expression in tumor of SRC-1, SRC-2/transcription intermediary factor-2 (TIF-2), SRC-3/amplified in breast cancer 1 (AIB1), ER, HER-1, -2, -3 and HER-4, as well as the transcription factor Ets-2, was measured by real-time RT-PCR. Protein levels were further assessed by Western blotting. Results Tamoxifen and its main metabolites were detected at high concentrations in serum and accumulated in tumor tissue in up to tenfolds the concentration in serum. Mean tumor volume/rat decreased in the tamoxifen treated group, but continued to increase in controls. The mRNA expression levels of SRC-1 (P = 0.035), SRC-2/TIF-2 (P = 0.002), HER-2 (P = 0.035) and HER-3 (P = 0.006) were significantly higher in tamoxifen treated tumors compared to controls, and the results were confirmed at the protein level using Western blotting. SRC-3/AIB1 protein was also higher in tamoxifen treated tumors. SRC-1 and SRC-2/TIF-2 mRNA levels were positively correlated with each other and with HER-2 (P ≤ 0.001), and the HER-2 mRNA expression correlated with the levels of the other three HER family members (P P  Conclusions The expression of SRCs and HER-2 and -3 is stimulated by tamoxifen treatment in DMBA-induced breast cancer. Stimulation and positive correlation of coactivators and HERs may represent an early response to endocrine treatment. The role of SRCs and HER-2 and -3 should be further studied in order to evaluate their effects on response to long-term tamoxifen treatment.</p

    Fibroblast miR-210 overexpression is independently associated with clinical failure in Prostate Cancer – a multicenter (in situ hybridization) study

    Get PDF
    There is a need for better prognostication in prostate cancer (PC). “The micromanager of hypoxia”, microRNA-210 (miR-210) is directly linked to hypoxia, is overexpressed in PC and has been implied in tumor cell-fibroblast crosstalk. We investigated the prognostic impact of miR-210 in tumor cells and fibroblasts in PC. Tumor and stromal samples from a multicenter PC cohort of 535 prostatectomy patients were inserted into tissue microarrays. To investigate the expression of miR-210, we used in situ hybridization and two pathologists semiquantitatively scored its expression. Overexpression of miR-210 in tumor cells was not associated to biochemical failure-free survival (BFFS, p=0.85) or clinical failure-free survival (CFFS, p=0.09). However, overexpression of miR-210 in fibroblasts was significantly associated to a poor CFFS (p=0.001), but not BFFS (p=0.232). This feature was validated in both cohorts. Overexpression of miR-210 was independently associated with a reduced CFFS (HR=2.76, CI 95% 1.25–6.09, p=0.012). Overexpression of miR-210 in fibroblasts is independently associated with a poor CFFS. This highlights the importance of fibroblasts and cellular compartment crosstalk in PC. miR-210 is a candidate prognostic marker and potential therapeutic target in PC

    Scatterplot of miR-143 and miR-145 expression in breast tumor tissue.

    No full text
    <p>Scatterplot of miR-143 and miR-145 expression in tumor tissue, measured by PCR. Spearman’s rho (R) is presented in the figure (***P<0.001).</p
    corecore