360 research outputs found

    Anomalous Neutrino Interaction, Muon g-2, and Atomic Parity Nonconservation

    Get PDF
    We propose a simple unified description of two recent precision measurements which suggest new physics beyond the Standard Model of particle interactions, i.e. the deviation of sin2θW\sin^2 \theta_W in deep inelastic neutrino-nucleon scattering and that of the anomalous magnetic moment of the muon. Our proposal is also consistent with a third precision measurement, i.e. that of parity nonconservation in atomic Cesium, which agrees with the Standard Model.Comment: 9 pages, including 1 figure, latest muon g-2 information adde

    Searching for energetic cosmic axions in a laboratory experiment: testing the PVLAS anomaly

    Full text link
    Astrophysical sources of energetic gamma rays provide the right conditions for maximal mixing between (pseudo)scalar (axion-like) particles and photons if their coupling is as strong as suggested by the PVLAS claim. This is independent of whether or not the axion interaction is standard at all energies or becomes supressed in the extreme conditions of the stellar interior. The flux of such particles through the Earth could be observed using a metre long, Tesla strength superconducting solenoid thus testing the axion interpretation of the PVLAS anomaly. The rate of events in CAST caused by axions from the Crab pulsar is also estimated for the PVLAS-favoured parameters.Comment: 5 pages, 3 figur

    TeV-scale bileptons, see-saw type II and lepton flavor violation in core-collapse supernova

    Full text link
    Electrons and electron neutrinos in the inner core of the core-collapse supernova are highly degenerate and therefore numerous during a few seconds of explosion. In contrast, leptons of other flavors are non-degenerate and therefore relatively scarce. This is due to lepton flavor conservation. If this conservation law is broken by some non-standard interactions, electron neutrinos are converted to muon and tau-neutrinos, and electrons - to muons. This affects the supernova dynamics and the supernova neutrino signal. We consider lepton flavor violating interactions mediated by scalar bileptons, i.e. heavy scalars with lepton number 2. It is shown that in case of TeV-mass bileptons the electron fermi gas is equilibrated with non-electron species inside the inner supernova core at a time-scale of order of (1-100) ms. In particular, a scalar triplet which generates neutrino masses through the see-saw type II mechanism is considered. It is found that supernova core is sensitive to yet unprobed values of masses and couplings of the triplet.Comment: accepted to Eur.Phys.J.

    The Majorana neutrino masses, neutrinoless double beta decay and nuclear matrix elements

    Full text link
    The effective Majorana neutrino mass is evaluated by using the latest results of neutrino oscillation experiments. The problems of the neutrino mass spectrum,absolute mass scale of neutrinos and the effect of CP phases are addressed. A connection to the next generation of the neutrinoless double beta decay (0nbb-decay) experiments is discussed. The calculations are performed for 76Ge, 100Mo, 136Xe and 130Te by using the advantage of recently evaluated nuclear matrix elements with significantly reduced theoretical uncertainty. An importance of observation of the 0nbb-decay of several nuclei is stressed.Comment: 29 pages, 5 figures, EXO (10 t) experiment considere

    More about neutron - mirror neutron oscillation

    Full text link
    It was pointed out recently that oscillation of the neutron nn into mirror neutron nn', a sterile twin of the neutron with exactly the same mass, could be a very fast process with the the baryon number violation, even faster than the neutron decay itself. This process is sensitive to the magnetic fields and it could be observed by comparing the neutron lose rates in the UCN storage chambers for different magnetic backgrounds. We calculate the probability of nnn-n' oscillation in the case when a mirror magnetic field B\vec{B}' is non-zero and show that in this case it can be suppressed or resonantly enhanced by applying the ordinary magnetic field B\vec{B}, depending on its strength and on its orientation with respect to B\vec{B}'. The recent experimental data, under this hypothesis, still allow the nnn-n' oscillation time order 1 s or even smaller. Moreover, they indicate that the neutron losses are sensitive to the orientation of the magnetic field. %at about 3σ3\sigma level. If these hints will be confirmed in the future experiments, this would point to the presence of the mirror magnetic field on the Earth of the order of 0.1 G, or some equivalent spin-dependent force of the other origin that makes a difference between the neutron and mirror neutron states.Comment: 10 page

    Search for heavy neutrinos mixing with tau neutrinos

    Get PDF
    We report on a search for heavy neutrinos (\nus) produced in the decay D_s\to \tau \nus at the SPS proton target followed by the decay \nudecay in the NOMAD detector. Both decays are expected to occur if \nus is a component of ντ\nu_{\tau}.\ From the analysis of the data collected during the 1996-1998 runs with 4.1×10194.1\times10^{19} protons on target, a single candidate event consistent with background expectations was found. This allows to derive an upper limit on the mixing strength between the heavy neutrino and the tau neutrino in the \nus mass range from 10 to 190 MeV\rm MeV. Windows between the SN1987a and Big Bang Nucleosynthesis lower limits and our result are still open for future experimental searches. The results obtained are used to constrain an interpretation of the time anomaly observed in the KARMEN1 detector.\Comment: 20 pages, 7 figures, a few comments adde

    Search for Doubly-Charged Higgs Bosons at LEP

    Get PDF
    Doubly-charged Higgs bosons are searched for in e^+e^- collision data collected with the L3 detector at LEP at centre-of-mass energies up to 209 GeV. Final states with four leptons are analysed to tag the pair-production of doubly charged Higgs bosons. No significant excess is found and lower limits at 95% confidence level on the doubly-charged Higgs boson mass are derived. They vary from 95.5 GeV to 100.2 GeV, depending on the decay mode. Doubly-charged Higgs bosons which couple to electrons would modify the cross section and forward-backward asymmetry of the e^+e^- -> e^+e^- process. The measurements of these quantities do not deviate from the Standard Model expectations and doubly-charged Higgs bosons with masses up to the order of a TeV are excluded

    Explaining ΩBaryon0.2ΩDark\Omega_{Baryon} \approx 0.2 \Omega_{Dark} through the synthesis of ordinary matter from mirror matter: a more general analysis

    Full text link
    The emerging cosmological picture is of a spatially flat universe composed predominantly of three components: ordinary baryons (ΩB0.05\Omega_B \approx 0.05), non-baryonic dark matter (ΩDark0.22\Omega_{Dark} \approx 0.22) and dark energy (ΩΛ0.7\Omega_{\Lambda} \approx 0.7). We recently proposed that ordinary matter was synthesised from mirror matter, motivated by the argument that the observed similarity of ΩB\Omega_B and ΩDark\Omega_{Dark} suggests an underlying similarity between the fundamental properties of ordinary and dark matter particles. In this paper we generalise the previous analysis by considering a wider class of effective operators that non-gravitationally couple the ordinary and mirror sectors. We find that while all considered operators imply ΩDark=\Omega_{Dark} = few×ΩB\times \Omega_B, only a subset quantitatively reproduce the observed ratio ΩB/ΩDark0.20\Omega_B/\Omega_{Dark} \approx 0.20. The 1\sim 1 eV mass scale induced through these operators hints at a connection with neutrino oscillation physics.Comment: minor changes, some references added, about 10 page
    corecore