66 research outputs found

    ANTI HYPERGLYCEMIC EVALUATION OF TERMINALIA CHEBULA LEAVES

    Get PDF
    Objective: The antihyperglycaemic potentiality of Terminalia chebula leaves has not yet been investigated thoroughly compared to its fruit counterpart. Therefore, the purpose of this study was to assess the hypoglycaemic potentiality of Terminalia chebula Retz leaves both in vitro and in vivo. Methods: Fresh leaves of T. chebula were collected, authenticated and grounded to a fine powder. The powdered material was extracted in methanol. The hypoglycaemic potentiality of the extract was accessed in vitro using enzyme alpha-amylase and alpha-glucosidase. The antihyperglycaemic activity of the methanol extract active fraction was accessed in vitro and in vivo. The active fraction thus obtained was partially characterized using Fourier transform infrared spectroscopy (FTIR) and High-performance liquid chromatography (HPLC) analysis. Results: The crude leave methanol extract of Terminalia chebula demonstrated 100% α glucosidase inhibition with IC50–0.956±0.342 mg/ml compared to standard drug acarbose. Oral administration of the active fraction to diabetic rats loaded with maltose significantly (P<0.05) retarded the postprandial spike of blood glucose level compared to standard drug acarbose. Partial characterization of the fraction reveals the presence of hydrosoluble tannin gallic acid. Conclusion: The study provides an in vitro and in vivo rationale evidence of Terminalia chebula leaves to retard postprandial hyperglycemia

    Amelioration of Glucolipotoxicity-Induced Endoplasmic Reticulum Stress by a “Chemical Chaperone” in Human THP-1 Monocytes

    Get PDF
    Chronic ER stress is emerging as a trigger that imbalances a number of systemic and arterial-wall factors and promote atherosclerosis. Macrophage apoptosis within advanced atherosclerotic lesions is also known to increase the risk of atherothrombotic disease. We hypothesize that glucolipotoxicity might mediate monocyte activation and apoptosis through ER stress. Therefore, the aims of this study are (a) to investigate whether glucolipotoxicity could impose ER stress and apoptosis in THP-1 human monocytes and (b) to investigate whether 4-Phenyl butyric acid (PBA), a chemical chaperone could resist the glucolipotoxicity-induced ER stress and apoptosis. Cells subjected to either glucolipotoxicity or tunicamycin exhibited increased ROS generation, gene and protein (PERK, GRP-78, IRE1α, and CHOP) expression of ER stress markers. In addition, these cells showed increased TRPC-6 channel expression and apoptosis as revealed by DNA damage and increased caspase-3 activity. While glucolipotoxicity/tunicamycin increased oxidative stress, ER stress, mRNA expression of TRPC-6, and programmed the THP-1 monocytes towards apoptosis, all these molecular perturbations were resisted by PBA. Since ER stress is one of the underlying causes of monocyte dysfunction in diabetes and atherosclerosis, our study emphasize that chemical chaperones such as PBA could alleviate ER stress and have potential to become novel therapeutics

    Sustainable Waste-to-Energy Technologies: Bioelectrochemical Systems

    Get PDF
    The food industry produces a large amount of waste and wastewater, of which most of the constituents are carbohydrates, proteins, lipids, and organic fibers. Therefore food wastes are highly biodegradable and energy rich. Bioelectrochemical systems (BESs) are systems that use microorganisms to biochemically catalyze complex substrates into useful energy products, in which the catalytic reactions take place on electrodes. Microbial fuel cells (MFCs) are a type of bioelectrochemical systems that oxidize substrates and generate electric current. Microbial electrolysis cells (MECs) are another type of bioelectrochemical systems that use an external power source to catalyze the substrate into by-products such as hydrogen gas, methane gas, or hydrogen peroxide. BESs are advantageous due to their ability to achieve a degree of substrate remediation while generating energy. This chapter presents an extensive literature review on the use of MFCs and MECs to remediate and recover energy from food industry waste. These bioelectrochemical systems are still in their infancy state and further research is needed to better understand the systems and optimize their performance. Major challenges and limitations for the use of BESs are summarized and future research needs are identified
    corecore