7 research outputs found
Fast free of acrylamide clearing tissue (FACT) for clearing, immunolabelling and three-dimensional imaging of partridge tissues
Fast free of acrylamide clearing tissue (FACT) is a modified sodium dodecyl sulfate-based clearing
protocol for the chemical clearing of lipids that completely preserves fluorescent signals in the
cleared tissues. The FACT protocol was optimized to image translucent immunostained brain and
non-nervous tissues. For this purpose adult male Chukar partridge (Alectoris chukar) was used as a
model. After clearing the tissues, 1 or 2 mm-thickness sections of tissues were immunolabeled. The
paraventricular nucleus in the hypothalamus (2-mm section) was cleared with FACT, and then was
stained with gonadotropin-inhibitory hormone (GnIH) antibody and Hoechst. Simultaneously, immunohistochemical
(IHC) staining of cryosectioned brain (30 μm) was done by GnIH-antibody. The
FACT protocol and staining of cell nuclei of nine other tissues were done by a z-stack motorized
fluorescent microscope. GnIH-immunoreactive neurons were found by FACT and IHC during the
breeding season in male partridges. Deep imaging of the kidney, duodenum, jejunum, lung, pancreas,
esophagus, skeletal muscle, trachea, and testis were also done. The FACT protocol can be used for
the three-dimensional imaging of various tissues and immunostained evaluation of protein markers
National, sub-national, and risk-attributed burden of thyroid cancer in Iran from 1990 to 2019
An updated exploration of the burden of thyroid cancer across a country is always required for making correct decisions. The objective of this study is to present the thyroid cancer burden and attributed burden to the high Body Mass Index (BMI) in Iran at national and sub-national levels from 1990 to 2019. The data was obtained from the GBD 2019 study estimates. To explain the pattern of changes in incidence from 1990 to 2019, decomposition analysis was conducted. Besides, the attribution of high BMI in the thyroid cancer DALYs and deaths were obtained. The age-standardized incidence rate of thyroid cancer was 1.57 (95% UI: 1.33–1.86) in 1990 and increased 131% (53–191) until 2019. The age-standardized prevalence rate of thyroid cancer was 30.19 (18.75–34.55) in 2019 which increased 164% (77–246) from 11.44 (9.38–13.85) in 1990. In 2019, the death rate, and Disability-adjusted life years of thyroid cancer was 0.49 (0.36–0.53), and 13.16 (8.93–14.62), respectively. These numbers also increased since 1990. The DALYs and deaths attributable to high BMI was 1.91 (0.95–3.11) and 0.07 (0.04–0.11), respectively. The thyroid cancer burden and high BMI attributed burden has increased from 1990 to 2019 in Iran. This study and similar studies’ results can be used for accurate resource allocation for efficient management and all potential risks’ modification for thyroid cancer with a cost-conscious view
Global, regional, and national burden of diabetes from 1990 to 2021, with projections of prevalence to 2050: a systematic analysis for the Global Burden of Disease Study 2021
This online publication has been
corrected. The corrected version
first appeared at thelancet.com
on September 28, 2023BACKGROUND : Diabetes is one of the leading causes of death and disability worldwide, and affects people regardless of country, age group, or sex. Using the most recent evidentiary and analytical framework from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD), we produced location-specific, age-specific, and sex-specific estimates of diabetes prevalence and burden from 1990 to 2021, the proportion of type 1 and type 2 diabetes in 2021, the proportion of the type 2 diabetes burden attributable to selected risk factors, and projections of diabetes prevalence through 2050. METHODS : Estimates of diabetes prevalence and burden were computed in 204 countries and territories, across 25 age groups, for males and females separately and combined; these estimates comprised lost years of healthy life, measured in disability-adjusted life-years (DALYs; defined as the sum of years of life lost [YLLs] and years lived with disability [YLDs]). We used the Cause of Death Ensemble model (CODEm) approach to estimate deaths due to diabetes, incorporating 25 666 location-years of data from vital registration and verbal autopsy reports in separate total (including both type 1 and type 2 diabetes) and type-specific models. Other forms of diabetes, including gestational and monogenic diabetes, were not explicitly modelled. Total and type 1 diabetes prevalence was estimated by use of a Bayesian meta-regression modelling tool, DisMod-MR 2.1, to analyse 1527 location-years of data from the scientific literature, survey microdata, and insurance claims; type 2 diabetes estimates were computed by subtracting type 1 diabetes from total estimates. Mortality and prevalence estimates, along with standard life expectancy and disability weights, were used to calculate YLLs, YLDs, and DALYs. When appropriate, we extrapolated estimates to a hypothetical population with a standardised age structure to allow comparison in populations with different age structures. We used the comparative risk assessment framework to estimate the risk-attributable type 2 diabetes burden for 16 risk factors falling under risk categories including environmental and occupational factors, tobacco use, high alcohol use, high body-mass index (BMI), dietary factors, and low physical activity. Using a regression framework, we forecast type 1 and type 2 diabetes prevalence through 2050 with Socio-demographic Index (SDI) and high BMI as predictors, respectively. FINDINGS : In 2021, there were 529 million (95% uncertainty interval [UI] 500–564) people living with diabetes worldwide, and the global age-standardised total diabetes prevalence was 6·1% (5·8–6·5). At the super-region level, the highest age-standardised rates were observed in north Africa and the Middle East (9·3% [8·7–9·9]) and, at the regional level, in Oceania (12·3% [11·5–13·0]). Nationally, Qatar had the world’s highest age-specific prevalence of diabetes, at 76·1% (73·1–79·5) in individuals aged 75–79 years. Total diabetes prevalence—especially among older adults—primarily reflects type 2 diabetes, which in 2021 accounted for 96·0% (95·1–96·8) of diabetes cases and 95·4% (94·9–95·9) of diabetes DALYs worldwide. In 2021, 52·2% (25·5–71·8) of global type 2 diabetes DALYs were attributable to high BMI. The contribution of high BMI to type 2 diabetes DALYs rose by 24·3% (18·5–30·4) worldwide between 1990 and 2021. By 2050, more than 1·31 billion (1·22–1·39) people are projected to have diabetes, with expected age-standardised total diabetes prevalence rates greater than 10% in two super-regions: 16·8% (16·1–17·6) in north Africa and the Middle East and 11·3% (10·8–11·9) in Latin America and Caribbean. By 2050, 89 (43·6%) of 204 countries and territories will have an age-standardised rate greater than 10%. INTERPRETATION : Diabetes remains a substantial public health issue. Type 2 diabetes, which makes up the bulk of diabetes cases, is largely preventable and, in some cases, potentially reversible if identified and managed early in the disease course. However, all evidence indicates that diabetes prevalence is increasing worldwide, primarily due to a rise in obesity caused by multiple factors. Preventing and controlling type 2 diabetes remains an ongoing challenge. It is essential to better understand disparities in risk factor profiles and diabetes burden across populations, to inform strategies to successfully control diabetes risk factors within the context of multiple and complex drivers.Bill & Melinda Gates Foundation.http://www.thelancet.comam2024School of Health Systems and Public Health (SHSPH)SDG-03:Good heatlh and well-bein
Recommended from our members
Clinical Instability of the Knee and Functional Differences Following Tibial Plateau Fractures Versus Distal Femoral Fractures
Background: Fractures of the knee account for about 6% of all trauma admissions. While its management is mostly focused on fracture treatment, it is not the only factor that defines the final outcome. Objectives: This study aimed to study objective and subjective outcomes after proximal tibial versus distal femoral fractures in terms of knee instability and health-related quality of life. Patients and Methods: This retrospective, cross-sectional, cohort study was carried out on 80 patients with either isolated proximal tibial (n = 42) or distal femoral (n = 38) fractures, who underwent open reduction and internal fixation. All the fractures were classified based on the Schatzker and AO classification for tibial plateau and distal femoral fractures, respectively. The patients were followed and examined by an orthopedic knee surgeon for clinical assessment of knee instability. In their last follow-up visit, these patients completed a Lysholm knee score and the short-form (SF) 36 health survey. Results: Among the 42 tibial plateau fractures, 25% were classified as Schatzker type 2. Of the 38 distal femoral fractures, we did not find any type B1 or B3 fractures. The overall prevalence of anterior and posterior instability was 42% and 20%, respectively. Medial Collateral Ligament (MCL) and Lateral Collateral Ligament (LCL) injuries were detected clinically in 50% and 28%, respectively. The incidence rates of ligament injuries in tibial plateau fractures were as follows: Anterior Collateral Ligament (ACL) 26%, Posterior Collateral Ligament (PCL) 7%, MCL 24%, and LCL 14%. Medial collateral ligament injury was the most common in the Schatzker type 2 (50% of the injuries). Distal femoral fractures were associated with ACL injury in 16%, PCL in 13%, MCL in 26% and LCL in 14%. However, final knee range of motion (ROM) and function (Lysholm score) were not associated with fracture location. No statistically significant difference was observed between the two groups, except for the valgus stress test at 30°knee flexion, which was more positive in tibial fractures. All eight domains of SF-36 score in the distal femoral and proximal tibial fractures were significantly different from the normal values; however, there were no statistically significant differences between femoral and tibial fracture scores. Conclusions: Although ROM is acceptable in knee joint fractures, instability is common. However, it seems that knee function and quality of life are not associated with the location of the fracture
The Effects of Acoustic White Noise on the Rat Central Auditory System During the Fetal and Critical Neonatal Periods: A Stereological Study
Aim: To evaluate the effects of long-term, moderate level noise exposure during crucial periods of rat infants on stereological parameters of medial geniculate body (MGB) and auditory cortex. Materials and Methods: Twenty-four male offspring of 12 pregnant rats were divided into four groups: fetal-to-critical period group, which were exposed to noise from the last 10 days of fetal life till postnatal day (PND) 29; fetal period group that exposed to noise during the last 10 days of fetal life; critical period group, exposed to noise from PND 15 till PND 29, and control group. White noise at 90 dB for 2 h per day was used. Statistical Analysis Used: Variance for variables was performed using Proc GLM followed by mean comparison by Duncan’s multiple range test. Results: Numerical density of neurons in MGB of fetal-to-critical period group was lower than control group. Similar results were seen in numerical density of neurons in layers IV and VI of auditory cortex. Furthermore, no significant difference was observed in the volume of auditory cortex among groups, and only MGB volume in fetal-to-critical period group was higher than other groups. Estimated total number of neurons in MGB was not significantly different among groups. Conclusion: It seems necessary to prevent long-term moderate level noise exposure during fetal-to-critical neonatal period
The burden of metabolic risk factors in North Africa and the Middle East, 1990–2019: findings from the Global Burden of Disease StudyResearch in context
Summary: Background: The objective of this study is to investigate the trends of exposure and burden attributable to the four main metabolic risk factors, including high systolic blood pressure (SBP), high fasting plasma glucose (FPG), high body-mass index (BMI), and high low-density lipoproteins cholesterol (LDL) in North Africa and the Middle East from 1990 to 2019. Methods: The data were retrieved from Global Burden of Disease Study 2019. Summary exposure value (SEV) was used for risk factor exposure. Burden attributable to each risk factor was incorporated in the population attributable fraction to estimate the total attributable deaths and disability-adjusted life-years (DALYs). Findings: While age-standardized death rate (ASDR) attributable to high-LDL and high-SBP decreased by 26.5% (18.6–35.2) and 23.4% (15.9–31.5) over 1990–2019, respectively, high-BMI with 5.1% (−9.0–25.9) and high-FPG with 21.4% (7.0–37.4) change, grew in ASDR. Moreover, age-standardized DALY rate attributed to high-LDL and high-SBP declined by 30.2% (20.9–39.0) and 25.2% (16.8–33.9), respectively. The attributable age-standardized DALY rate of high-BMI with 8.3% (−6.5–28.8) and high-FPG with 27.0% (14.3–40.8) increase, had a growing trend. Age-standardized SEVs of high-FPG, high-BMI, high-SBP, and high-LDL increased by 92.4% (82.8–103.3), 76.0% (58.9–99.3), 10.4% (3.8–18.0), and 5.5% (4.3–7.1), respectively. Interpretation: The burden attributed to high-SBP and high-LDL decreased during the 1990–2019 period in the region, while the attributable burden of high-FPG and high-BMI increased. Alarmingly, exposure to all four risk factors increased in the past three decades. There has been significant heterogeneity among the countries in the region regarding the trends of exposure and attributable burden. Urgent action is required at the individual, community, and national levels in terms of introducing effective strategies for prevention and treatment that account for local and socioeconomic factors. Funding: Bill & Melinda Gates Foundation
Global, regional, and national burden of diabetes from 1990 to 2021, with projections of prevalence to 2050: a systematic analysis for the Global Burden of Disease Study 2021
Background: Diabetes is one of the leading causes of death and disability worldwide, and affects people regardless of country, age group, or sex. Using the most recent evidentiary and analytical framework from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD), we produced location-specific, age-specific, and sex-specific estimates of diabetes prevalence and burden from 1990 to 2021, the proportion of type 1 and type 2 diabetes in 2021, the proportion of the type 2 diabetes burden attributable to selected risk factors, and projections of diabetes prevalence through 2050. Methods: Estimates of diabetes prevalence and burden were computed in 204 countries and territories, across 25 age groups, for males and females separately and combined; these estimates comprised lost years of healthy life, measured in disability-adjusted life-years (DALYs; defined as the sum of years of life lost [YLLs] and years lived with disability [YLDs]). We used the Cause of Death Ensemble model (CODEm) approach to estimate deaths due to diabetes, incorporating 25 666 location-years of data from vital registration and verbal autopsy reports in separate total (including both type 1 and type 2 diabetes) and type-specific models. Other forms of diabetes, including gestational and monogenic diabetes, were not explicitly modelled. Total and type 1 diabetes prevalence was estimated by use of a Bayesian meta-regression modelling tool, DisMod-MR 2.1, to analyse 1527 location-years of data from the scientific literature, survey microdata, and insurance claims; type 2 diabetes estimates were computed by subtracting type 1 diabetes from total estimates. Mortality and prevalence estimates, along with standard life expectancy and disability weights, were used to calculate YLLs, YLDs, and DALYs. When appropriate, we extrapolated estimates to a hypothetical population with a standardised age structure to allow comparison in populations with different age structures. We used the comparative risk assessment framework to estimate the risk-attributable type 2 diabetes burden for 16 risk factors falling under risk categories including environmental and occupational factors, tobacco use, high alcohol use, high body-mass index (BMI), dietary factors, and low physical activity. Using a regression framework, we forecast type 1 and type 2 diabetes prevalence through 2050 with Socio-demographic Index (SDI) and high BMI as predictors, respectively. Findings: In 2021, there were 529 million (95% uncertainty interval [UI] 500-564) people living with diabetes worldwide, and the global age-standardised total diabetes prevalence was 6·1% (5·8-6·5). At the super-region level, the highest age-standardised rates were observed in north Africa and the Middle East (9·3% [8·7-9·9]) and, at the regional level, in Oceania (12·3% [11·5-13·0]). Nationally, Qatar had the world's highest age-specific prevalence of diabetes, at 76·1% (73·1-79·5) in individuals aged 75-79 years. Total diabetes prevalence-especially among older adults-primarily reflects type 2 diabetes, which in 2021 accounted for 96·0% (95·1-96·8) of diabetes cases and 95·4% (94·9-95·9) of diabetes DALYs worldwide. In 2021, 52·2% (25·5-71·8) of global type 2 diabetes DALYs were attributable to high BMI. The contribution of high BMI to type 2 diabetes DALYs rose by 24·3% (18·5-30·4) worldwide between 1990 and 2021. By 2050, more than 1·31 billion (1·22-1·39) people are projected to have diabetes, with expected age-standardised total diabetes prevalence rates greater than 10% in two super-regions: 16·8% (16·1-17·6) in north Africa and the Middle East and 11·3% (10·8-11·9) in Latin America and Caribbean. By 2050, 89 (43·6%) of 204 countries and territories will have an age-standardised rate greater than 10%. Interpretation: Diabetes remains a substantial public health issue. Type 2 diabetes, which makes up the bulk of diabetes cases, is largely preventable and, in some cases, potentially reversible if identified and managed early in the disease course. However, all evidence indicates that diabetes prevalence is increasing worldwide, primarily due to a rise in obesity caused by multiple factors. Preventing and controlling type 2 diabetes remains an ongoing challenge. It is essential to better understand disparities in risk factor profiles and diabetes burden across populations, to inform strategies to successfully control diabetes risk factors within the context of multiple and complex drivers. Funding: Bill & Melinda Gates Foundation