36 research outputs found

    Command shaping techniques for vibration control of a flexible robot manipulator

    Get PDF
    This paper presents an investigation into development of feed-forward control strategies for vibration control of a flexible robot manipulator using command shaping techniques based on input shaping, low-pass and band-stop filtering. A constrained planar single-link flexible manipulator is considered and the dynamic model of the system is derived using the finite element method. An unshaped bang–bang torque input is used to determine the characteristic parameters of the system for design and evaluation of the control techniques. Feed-forward controllers are designed based on the natural frequencies and damping ratios of the system. Simulation results of the response of the manipulator to the shaped and filtered inputs are presented in time and frequency domains. Performances of the techniques are assessed in terms of level of vibration reduction at resonance modes, speed of response, robustness and computational complexity. The effects of number of impulse sequence and filter order on the performance of the system are investigated. Finally, a comparative assessment of the input shaping and input-filtering techniques is presented and discussed

    Theoretical development of minimum effort active noise control with feedback inclusion architecture.

    Get PDF
    This paper presents the development of minimum effort active noise control theory for feedforward single-input single output (SISO) architecture, which includes the feedback acoustic path in the controller formulation. The theoretical range of effective minimum effort parameter with respect to level of point cancellation at the observer and the interference pattern generated around the observer for periodic noise control in free-field are investigated. It is found that for a minimum of 6 dB cancellation which corresponds to cancellation factor of 0.75 at the observer, the effort parameter must be specified as less than unity. It is also found that the cancellation pattern characterised by 20 dB, 10 dB and 6 dB zones reduces significantly in terms of size with an increase in the value of the effort term

    Design of self-tuning minimum effort active noise control with feedback inclusion architecture

    Get PDF
    This paper presents the development of a self-tuning controller design of minimum effort active noise control (ANC) for feedforward single-input single-output (SISO) architecture which includes the feedback acoustic path in the controller formulation. The controller design law is derived for suitable self-tuning implementation and the self-tuning controller is evaluated in a realistically constructed ANC simulation environment. The self-tuning controller design involves a two-stage identification process where the controller is replaced by a switch. This switch is closed and opened in sequence generating two transfer functions which are then used in constructing the controller specified by a minimum effort control law. The implementation requires an estimate of the secondary path transfer function which can be identified either online or offline. The controller design and implementation are evaluated in terms of the level of cancellation at the observer through simulation studies for various values of modified effort weighting parameter in the range ⩽0γ⩽1. It was found that the optimal controller designed using this technique which is constrained only by the accuracy of the two models identified using recursive least squares algorithm, yields good cancellation level

    Analysis of geometry related constraints of minimum effort active noise control system

    Get PDF
    This paper presents an analysis of the geometry-related constraints of a single-input single output (SISO) minimum effort active noise control system with feedback inclusion architecture which includes the feedback path in the controller formulation. Realisation of this type of minimum effort controller imposes an infinite gain control (IGC) requirement for certain geometrical arrangements. In the investigation into these geometrical arrangements with fixed primary and secondary source locations, the IGC locus is found to be two circles occupied by the detector and observer respectively in three dimensions. Varying the minimum effort parameter term has the effect of moving these two circles closer or away from each other, hence varying their location and radii. As a result, the minimum effort parameter, apart from constraining the control signal has a potential of overcoming the IGC constraints for a fixed geometrical arrangement

    Inclined ergometer to enhance FES-assisted indoor rowing exercise performance

    Get PDF
    Improving the FES-assisted indoor rowing exercise (FES-rowing) performance enables the spinal cord injury (SCI) people to perform hybrid FES-exercise in a higher level of intensity. High level of exercise volume and intensity can play a big role in prevention of cardiovascular disease, type 2 diabetes and obesity which is a significant threat to the health of people with chronic SCI. FES-rowing can be enhanced to achieved the high level exercise through the arrangement of the rowing ergometer. In this paper, the performance of FES-rowing using an adjustable inclined rowing ergometer is investigated. Two different methods to enhance the FES-rowing performance using inclined ergometer are implemented. A model of the adjustable inclined ergometer and humanoid are developed using the Visual Nastran (vN4D) software environment and validated by the experimental work. Fuzzy logic control is implemented to control the knee and elbow trajectories for smooth rowing manoeuvre. The generated level of electrical stimulations for activation of quadriceps and hamstrings muscles are recorded and analysed. The FES-rowing efficiency for both methods have been defined and illustrated. The results show the inclined ergometer with upper body effort is the best performance in enhancing the FES-rowing

    Stabilizing control of two-wheeled wheelchair with movable payload using optimized interval type-2 fuzzy logic

    Get PDF
    The control schemes of a wheelchair having two wheels with movable payload utilizing the concept of a double-link inverted pendulum have been investigated in this article. The proposed wheelchair has been simulated using SimWise 4D software considering the most efficient parameters. These parameters are extracted using the spiral dynamic algorithm while being controlled with interval type-2 fuzzy logic controller (IT2FLC). The robustness and stability of the implemented controller are assessed under different situations including standing upright, forward motion and application of varying directions and magnitudes of outer disturbances to movable (up and down) system payload. It is shown that the two-wheeled wheelchair adopted by the newly introduced controller has achieved a 94% drop in torque for both Link1 and Link2 and more than 98% fall in distance travelled in comparison with fuzzy logic control type-1 (FLCT1) controller employed in an earlier design. The present study has further considered the increased nonlinearity and complexity of the additional moving payload. From the outcome of this study, it is obvious that the proposed IT2FLC-spiral dynamic algorithm demonstrates better performance than FLCT1 to manage the uncertainties and nonlinearities in case of a movable payload two-wheel wheelchair system

    Modelling and control of standing up and sitting down manoeuver

    Get PDF
    Exoskeleton Robot is one of the most significant examples of human-oriented robotic devices. Nevertheless, the main challenge remains the complexity of their mechanical design and human-robot interfaces. This paper is an outcome of a research to model and to simulate the support of mobility of an elderly people using exoskeleton. Exoskeleton is developed in order to complement the corporal deficiencies of an elderly person in standing up and sitting down. When the natural joint torques is integrated with the exoskeleton's torque the result is in an overall torque that is comparable to that of a physically normal person. This work focuses on standing-up and sitting-down movements. Appropriate simulation models are formulated and their performances examined against measured data. The results with PID control show that at different speed of standing up and sitting down, the joint torques can be compromised. This is done within allowable limits

    Integrated modelling and design for realizing a two-wheeled wheelchair for disabled

    Get PDF
    Two-wheeled wheelchairs are considered highly nonlinear and complex systems. The systems mimic a double-inverted pendulum scenario and will provide better manoeuvrability in confined spaces and also to reach higher level of height for pick and place tasks. The challenge resides in modelling and control of the two-wheeled wheelchair to perform comparably to a normal four-wheeled wheelchair. Most common modelling techniques have been accomplished by researchers utilizing the basic Newton’s Laws of motion and some have used 3D tools to model the system where the models are much theoretical and quite far from the practical implementation. This paper is aimed at closing the gap between the conventional mathematical modelling approaches where the integrated 3D modelling approach with validation on the actual hardware implementation was conducted. To achieve this, both nonlinear and a linearized model in terms of state space model were obtained from the mathematical model of the system for analysis and, thereafter, a 3D virtual prototype of the wheelchair was developed, simulated and analysed. This have increased the confidence level for the proposed platform and facilitated the actual hardware implementation of the two-wheeled wheelchair. Results show that the prototype developed and tested has successfully worked within the specific requirements established

    Implementation of PID based controller tuned by Evolutionary Algorithm for Double Link Flexible Robotic Manipulator

    Get PDF
    The paper investigates the development of intelligent hybrid collocated and non-collocated PID controller for hub motion and end point vibration suppression of doublelink flexible robotic manipulator. The system was modeled using multi-layer perceptron neural network structure based on Nonlinear Autoregressive Exogenous (NARX) model. The hybrid controllers are incorporated with optimization algorithm that is ABC and PSO to find out the parameters of the PID controllers. Numerical simulation was carried out in MATLAB/Simulink to evaluate the system in term of tracking capability and vibration suppression for both links. Performance of the controllers are compared with the hybrid PID-PID Ziegler Nichols (ZN) controller in term of input tracking and vibration suppression. The results show that PSO revealed the superiority over ABC in controlling the system. The system managed to reach desired angle for both hub at lower overshoot using proposed method. Meanwhile, the vibration reduction shows great improvement for both link 1 and 2. This signifies that, the PSO algorithm is very effective in optimizing the PID parameters
    corecore