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Abstract

This paper presents an investigation into development of feed-forward control strategies

for vibration control of a flexible robot manipulator using command shaping techniques based

on input shaping, low-pass and band-stop filtering. A constrained planar single-link flexible

manipulator is considered and the dynamic model of the system is derived using the finite

element method. An unshaped bang–bang torque input is used to determine the characteristic

parameters of the system for design and evaluation of the control techniques. Feed-forward

controllers are designed based on the natural frequencies and damping ratios of the system.

Simulation results of the response of the manipulator to the shaped and filtered inputs are

presented in time and frequency domains. Performances of the techniques are assessed in

terms of level of vibration reduction at resonance modes, speed of response, robustness and

computational complexity. The effects of number of impulse sequence and filter order on the

performance of the system are investigated. Finally, a comparative assessment of the input

shaping and input-filtering techniques is presented and discussed.

� 2003 Elsevier Ltd. All rights reserved.
1. Introduction

Most existing robotic manipulators are designed and built in a manner to

maximise stiffness, in an attempt to minimise system vibration and achieve good

positional accuracy. High stiffness is achieved by using heavy material. As a con-

sequence, such robots are usually heavy with respect to the operating payload. This,
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in turn, limits the speed of operation of the robot manipulation, increases the size of

actuator, boosts energy consumption and increases the overall cost. Moreover, the

payload to robot weight ratio, under such situations, is low. In order to solve these

problems, robotic systems are designed to be lightweight and thus possess some level
of flexibility. Conversely, flexible robot manipulators exhibit many advantages over

their rigid counterparts: they require less material, are lighter in weight, have higher

manipulation speed, lower power consumption, require smaller actuators, are more

maneuverable and transportable, are safer to operate due to reduced inertia, have

enhanced back-drive ability due to elimination of gearing, have less overall cost and

higher payload to robot weight ratio [1].

However, the control of flexible robot manipulators to maintain accurate posi-

tioning is an extremely challenging problem. Due to the flexible nature and dis-
tributed characteristics of the system, the dynamics are highly non-linear and

complex. Problems arise due to precise positioning requirement, vibration due to

system flexibility, the difficulty in obtaining accurate model of the system and non-

minimum phase characteristics of the system [2,3]. Therefore, flexible manipulators

have not been favoured in production industries, due to un-attained end-point po-

sitional accuracy requirements in response to input commands. In this respect, a

control mechanism that accounts for both the rigid body and flexural motions of the

system is required. If the advantages associated with lightness are not to be sacri-
ficed, accurate models and efficient control strategies for flexible robot manipulators

have to be developed.

The control strategies for flexible robot manipulator systems can be classified as

feed-forward (open-loop) and feedback (closed-loop) control schemes. Feed-forward

techniques for vibration suppression involve developing the control input through

consideration of the physical and vibrational properties of the system, so that system

vibrations at response modes are reduced. This method does not require any addi-

tional sensors or actuators and does not account for changes in the system once the
input is developed. On the other hand, feedback-control techniques use measurement

and estimations of the system states to reduce vibration. Feedback controllers can be

designed to be robust to parameter uncertainty. For flexible manipulators, feed-

forward and feedback control techniques are used for vibration suppression and

end-point position control respectively. An acceptable system performance without

vibration that accounts for system changes can be achieved by developing a hybrid

controller consisting of both control techniques. Thus, a properly designed feed-

forward controller is required. Furthermore, the complexity of the required feedback
controllers can be reduced.

A number of techniques have been proposed as feed-forward control strategies for

flexible manipulators. Aspinwall [4] has used Fourier expansion for the forcing

function through which the controller parameters are chosen so as to reduce the

peaks of the frequency spectrum at discrete points. This only eliminates a few of the

peaks and leaves some modes excited. Swigert [5] has derived an approximately

shaped torque that minimises residual vibration and the effect of parameter varia-

tions that affect the modal frequencies. However, the forcing function is not time
optimal. Several researchers have presented and studied the application of computed
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torque techniques for control of flexible manipulators [6,7]. In this approach, the

system is first modelled in detail. By inverting the desired output trajectory, the re-

quired input needed to generate that trajectory is computed. For linear systems, this
might involve dividing the frequency spectrum of the trajectory by the transfer

function of the system, thus obtaining the frequency spectrum of the input. For non-

linear systems, this technique involves inverting the equations describing the model.

However, this technique suffers from several problems [8]. These are due to inac-

curacy of a model, selection of poor trajectory to guarantee that the system can

follow it, sensitivity to variations in system parameters and response time penalties

for a causal input.

Bang–bang control involves the utilisation of single and multiple-switch bang–
bang control functions [9]. Bang–bang control functions require accurate selection of

switching time, depending on the representative dynamic model of the system. Minor

modelling errors could cause switching error, and thus, result in a substantial in-

crease in the residual vibrations. Although, utilisation of minimum energy inputs

has been shown to eliminate the problem of switching times that arise in the bang–

bang input, the total response time becomes longer [9,10]. Meckl and Seering [11,12]

have examined the construction of input functions from either ramped sinusoids

or versine (1� cosine) functions. This approach involves adding up harmonics of
one of these template functions. If all harmonics were included, the input would be a

time optimal rectangular input function. The harmonics that have significant spec-

tral energy at the natural frequencies of the system are eliminated. The resulting

input which is given to the system approaches the rectangular shape, but does

not significantly excite the resonances. The method has subsequently been tested

on a cartesian robot, achieving considerable reduction in the residual vibrations

[10].

Another promising technique for feed-forward control of a flexible robot ma-
nipulator is the command shaping technique. A significant amount of work on

shaped command input based on filtering techniques has been reported. In this

approach, a shaped torque input is developed on the basis of extracting the input

energy around the natural frequencies of the system, so that the vibration of the

flexible robot manipulator during and after the movement is reduced. Various fil-

tering techniques have been employed. These include low-pass filters, band-stop

filters and notch filters [13–16]. It has been shown that better performance in the

reduction of level of vibration of the system is achieved using low-pass filters.
An approach in command-shaping techniques known as input shaping has been

proposed by Singer and co-workers which is currently receiving considerable at-

tention in vibration control [8,17]. Since its introduction, the method has been in-

vestigated and extended. The method involves convolving a desired command with a

sequence of impulses known as input shaper. The shaped command that results from

the convolution is then used to drive the system. Design objectives are to determine

the amplitude and time locations of the impulses, so that the shaped command re-

duces the detrimental effects of system flexibility. These parameters are obtained
from the natural frequencies and damping ratios of the system. Using this method,

a response without vibration can be achieved, however, with a slight time delay
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approximately equal to the length of the impulse sequence. The method has been

shown to be the most effective in reducing vibration in flexible plants [18]. The more

impulses are used, the more robust the system becomes to flexible mode parameter

changes but the longer the delay introduced into the system response. Previous in-
vestigations have shown that the input shaper can be designed to account for

modelling errors in natural frequencies and damping ratio [19,20].

The aim of this investigation is to develop feed-forward control schemes for

vibration control of a flexible robot manipulator system using input shaping

and filtering techniques and to provide a comparative assessment of these tech-

niques. In this work, low-pass and band-stop filters are considered. A constrained

planar single-link flexible robot manipulator is considered and the dynamic model

of the system is derived using the finite element (FE) method. Previous investi-
gations have shown that the FE method gives an acceptable dynamic characteri-

sation of the actual system. Moreover, a single element is sufficient to describe

the dynamic behaviour of the manipulator reasonably well [21,22]. Initially, the

system is excited with a single-switch bang–bang torque input and the system pa-

rameters are obtained. Then the input shapers and filters are designed based on the

properties of the manipulator and used for pre-processing the input, so that no

energy is put into the system at resonance modes. Performances of the developed

controllers are assessed in terms of level of vibration reduction at resonance
modes, speed of response, robustness to errors in vibration frequency and compu-

tational complexity. These are accomplished by comparing the system response to

that with the unshaped bang–bang input. Moreover, the effects of number of im-

pulses and filter order on the performance of the system are investigated. Simula-

tion results in time and frequency domains of the response of the flexible

manipulator to the unshaped, shaped and filtered inputs are presented. The ro-

bustness of the control schemes is assessed with up to 30% error tolerance in vi-

bration frequencies. Finally, a comparative assessment of the performances of the
feed-forward control strategies in vibration suppression of the manipulator is pre-

sented and discussed.
2. The flexible manipulator system

A description of the single-link flexible manipulator system considered in this

work, is shown in Fig. 1, where XOY and POQ represent the stationary and moving

co-ordinates frames respectively, s represents the applied torque at the hub. E, I , q,
A, Ih and Mp represent the Young modulus, area moment of inertia, mass density per

unit volume, cross-sectional area, hub inertia and payload mass of the manipulator

respectively. In this work, the motion of the manipulator is confined to the XOY

plane. Since the manipulator is long and slender, transverse shear and rotary inertia
effects are neglected. This allows the use of the Bernoulli–Euler beam theory to

model the elastic behaviour of the manipulator. The manipulator is assumed to be

stiff in vertical bending and torsion, allowing it to vibrate dominantly in the hori-

zontal direction and thus, the gravity effects are neglected. Moreover, the manipu-



Fig. 1. Description of the flexible manipulator system.
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lator is considered to have constant cross-section and uniform material properties

throughout. In this study, an aluminium type flexible manipulator of dimensions

900� 19:008� 3:2004 mm3, E ¼ 71� 109 N/m2, I ¼ 5:1924 m4 and q ¼ 2710 kg/m3

is considered.
3. Modelling of the flexible manipulator

This section briefly describes modelling of the flexible robot manipulator system,

as basis of a simulation environment for development of feed-forward control

strategies for vibration control of the system. In this investigation, the FE method

with 10 elements is considered in characterising the dynamic behaviour of the ma-

nipulator incorporating structural damping and hub inertia. The equations of mo-
tion are expressed in a state-space form. Simulation results of the dynamic behaviour

of the manipulator are presented in the time and frequency domains.

The main steps in an FE analysis include (1) discretisation of the structure into

elements; (2) selection of an approximating function to interpolate the result; (3)

derivation of the basic element equation; (4) calculation of the system equation; (5)

incorporation of the boundary conditions and (6) solving the system equation with

the inclusion of the boundary conditions. In this manner, the flexible manipulator is

treated as an assemblage of n elements and the development of the algorithm can be
divided into three main parts: the FE analysis, state-space representation and ob-

taining and analysing the system response.

For a small angular displacement hðtÞ and a small elastic deflection wðx; tÞ, the
total displacement yðx; tÞ of a point along the manipulator at a distance x from the

hub can be described as a function of both the rigid body motion hðtÞ and elastic

deflection wðx; tÞ measured from the line OX as
yðx; tÞ ¼ xhðtÞ þ wðx; tÞ
Using the FE method and kinetic and potential energies of an element, yields the

element mass matrix, Mn and stiffness matrix, Kn as [22]
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Mn ¼
qAl
420

m11 m12 m13 m14 m15

m21 156 22l 54 �13l

m31 22l 4l2 13l �3l2

m41 54 13l 156 �22l

m51 �13l �3l2 �22l 4l2

2
666664

3
777775

Kn ¼
EI
l3

0 0 0 0 0

0 12 6l �12 6l

0 6l 4l2 �6l 2l2

0 �12 �6l 12 �6l

0 6l 2l2 �6l 4l2

2
6666664

3
7777775
where
m11 ¼ 140l2ð3n2 � 3nþ 1Þ
m12 ¼ m21 ¼ 21lð10n� 7Þ
m13 ¼ m31 ¼ 7l2ð5n� 3Þ
m14 ¼ m41 ¼ 21lð10n� 3Þ
m15 ¼ m51 ¼ �7l2ð5n� 2Þ
l is the elemental length of the manipulator and n is number of elements.

Assembling the element mass and stiffness matrices and utilising the Lagrange

equation of motion, the desired dynamic equations of motion of the system can be
obtained as
M €QQðtÞ þ D _QQðtÞ þ KQðtÞ ¼ F ðtÞ ð1Þ

where M , D and K are global mass, damping and stiffness matrices of the manipu-

lator respectively. The damping matrix is obtained by assuming that the manipulator

exhibits the characteristic of Rayleigh damping. F ðtÞ is a vector of external forces.

QðtÞ is a nodal displacement vector given as
QðtÞ ¼ ½ h w0 h0 � � � wn hn�T
where wnðtÞ and hnðtÞ are the flexural and angular deflections at the end point of the

manipulator respectively.

With 10 elements, the M , D and K matrices in Eq. (1) are of size m� m and F ðtÞ is
of size m� 1, where m ¼ 21. For the manipulator, considered as a pinned-free arm
with the applied torque s at the hub, the flexural and angular deflections, velocity

and acceleration are all zero at the hub at t ¼ 0 and the external force is F ðtÞ ¼
½s 0 � � � 0�T. Moreover, in this work, it is assumed that Qð0Þ ¼ 0.

The matrix differential equation in Eq. (1) can be represented in a state-space form

as
_vv ¼ Avþ Bu

y ¼ Cv
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where
C ¼ ½I2m�

0m is an m� m null matrix, Im is an m� m identity matrix, 0m�1 is an m� 1 null

vector, u ¼ ½s 0 � � � 0�T, v ¼ ½h w1 h1 � � � wn hn _hh _ww1
_hh1 . . . _wwn

_hhn�T. Solving

the state-space matrices gives the vector of states v, that is, the angular, nodal

flexural and angular displacements and velocities. Further details of the derivation of

the dynamic equations of motion of the flexible manipulator using the FE method

are given in [22].

To assess the adequacy of the FE model, simulation results of the dynamic be-
haviour of the flexible manipulator using 10 elements are presented in the time and

frequency domains. Previous experimental study on the actual flexible manipulator

has shown that the damping ratio of the system ranges from 0.024 to 0.1 [23]. In this

work, the damping ratios of the system were deduced as 0.026, 0.038 and 0.04 for the

first, second and third modes respectively. Fig. 2a shows a single-switch bang–bang

signal of amplitude 0.3 Nm used as an input torque, applied at the hub of the

manipulator. Fig. 2b shows the corresponding spectral density (SD). A bang–bang

torque has a positive (acceleration) and negative (deceleration) period allowing the
manipulator to, initially, accelerate and then decelerate and eventually stop at a

target location. Three system responses namely hub-angle, hub-velocity and end-

point residual with SD of the end-point residual are obtained. The results are re-

corded with a sampling frequency of 500 Hz. In this work, the first three modes of

vibration are considered, as these dominantly characterise the behaviour of the

flexible manipulator.

Fig. 3 shows the response of the flexible manipulator system with the SD of the

end-point residual using 10 elements. These results were considered as the system
Fig. 2. The bang–bang torque input. (a) Time domain, (b) SD.



Fig. 3. Response of the flexible manipulator to the bang–bang torque input. (a) Hub angle, (b) hub ve-

locity, (c) end-point residual, (d) SD of end-point residual.
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response to the unshaped input and subsequently will be used to evaluate the per-

formance of the command shaping techniques. It is noted that a steady-state hub-

angle level of 38� was achieved within rise time of 0.386 s and settling time of 0.788 s.

The rise and settling times were calculated on the basis of response duration of 10–

90% and �2% of the steady-state value respectively. Note that vibrations occur

during movement of the manipulator, as evidenced in the hub-velocity and end-point
residual responses. The end-point residual response was found to oscillate between 0

and 30 mm. The residual motion of the system is found to be characterised by the

first three modes of vibration. Resonance frequencies of the system were obtained by

transforming the time-domain representation of the end-point residual of the system

into frequency-domain using FFT analysis. As demonstrated in Fig. 3, the vibration

frequencies of the system were obtained as 12, 35 and 65 Hz. The magnitudes of SD

of the end-point residual response were obtained as 0.01, 0.002 and 0.0003 m2/Hz for
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the first three resonance modes respectively. Previous experimental study of the

actual flexible manipulator has resulted vibration frequencies of 11.72, 35.15 and

65.6 Hz with a steady-state hub-angle response of 38� [22]. These are reasonably
close to those obtained from the response of the system using 10 elements. Thus the

model provides sufficient accuracy for development and evaluation of control

techniques.
4. Feed-forward control techniques

In this section, input shaping, low-pass and band-stop filtering techniques are

introduced for vibration control of a flexible robot manipulator.

4.1. Input shaping

As described in Section 1, the input shaping method involves convolving a desired

command with a sequence of impulses. The design objectives are to determine the

amplitude and time location of the impulses. The method is briefly described in this

section [8]. A vibratory system of any order can be modelled as a superposition of

second order systems each with a transfer function
GðsÞ ¼ x2

s2 þ 2nxsþ x2
where x is the natural frequency and n is the damping ratio of the system. Thus, the

impulse response of the system can be obtained as
yðtÞ ¼ Axffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n2

p e�nxðt�t0Þ sin x
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n2

q
ðt

�
� t0Þ

�

where A and t0 are the strength and time of the impulse respectively. Further, the
response to a sequence of impulses can be obtained by superposition of the impulse

responses. Thus, for N impulses, with xd ¼ xð
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n2

p
Þ, the impulse response can be

expressed as
yðtÞ ¼ M sinðxd t þ bÞ
where
M ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN
i¼1

Bi cos/i

 !2

þ
XN
i¼1

Bi sin/i

 !2
vuut ;

Bi ¼
Aixffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n2

p e�nxðt�t0Þ and /i ¼ xd ti
Ai and ti are the strengths and times of the impulses.

The residual single mode vibration amplitude of the impulse response is obtained

at the time of the last impulse, tN as
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V ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V 2
1 þ V 2

2

q
ð2Þ
where
V1 ¼
XN
i¼1

Aixnffiffiffiffiffiffiffiffiffiffiffiffiffi
1� f2

p e�fxnðtN�tiÞ cosðxd tiÞ; V2 ¼
XN
i¼1

Aixnffiffiffiffiffiffiffiffiffiffiffiffiffi
1� f2

p e�fxnðtN�tiÞ sinðxd tiÞ
To achieve zero vibration after the last impulse, it is required that both V1 and V2
in Eq. (2) are independently zero. Furthermore, to ensure that the shaped command

input produces the same rigid body motion as the unshaped command, it is required

that the sum of strengths of the impulses is unity. To avoid response delay, the first

impulse is selected at time t1 ¼ 0. Hence by setting V1 and V2 in Eq. (2) to zero,PN
i¼1 Ai ¼ 1 and solving yields a two-impulse sequence with parameters as
t1 ¼ 0; t2 ¼
p
xd

A1 ¼
1

1þ K
; A2 ¼

K
1þ K

ð3Þ
where
K ¼ e
� npffiffiffiffiffiffi

1�n2
p

The robustness of the input shaper to error in natural frequencies of the system

can be increased by setting dV =dx ¼ 0, where dV =dx is the rate of change of V with

respect to x.
Setting the derivative to zero is equivalent of producing small changes in vibration

with corresponding changes in the natural frequency. Thus, additional constraints
are incorporated into the equation, which after solving yields a three-impulse

sequence with parameters as
t1 ¼ 0; t2 ¼
p
xd

; t3 ¼ 2t2

A1 ¼
1

1þ 2K þ K2
; A2 ¼

2K
1þ 2K þ K2

; A3 ¼
K2

1þ 2K þ K2

ð4Þ
where K is as in Eq. (3). The robustness of the input shaper can further be increased

by taking and solving the second derivative of the vibration in Eq. (2). Similarly, this

yields a four-impulse sequence with parameters as
t1 ¼ 0; t2 ¼
p
xd

; t3 ¼ 2t2; t4 ¼ 3t2

A1 ¼
1

1þ 3K þ 3K2 þ K3
; A2 ¼

3K
1þ 3K þ 3K2 þ K3

;

A3 ¼
3K2

1þ 3K þ 3K2 þ K3
; A4 ¼

K3

1þ 3K þ 3K2 þ K3

ð5Þ
where K is as in Eq. (3).
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To handle higher vibration modes, an impulse sequence for each vibration mode

can be designed independently. Then the impulse sequences can be convoluted to-

gether to form a sequence of impulses that attenuates vibration at higher modes. For
any vibratory system, the vibration reduction can be accomplished by convolving

any desired system input with the impulse sequence. This yields a shaped input that

drives the system to a desired location without vibration.

4.2. Filtering techniques

Command shaping based on filtering techniques is developed on the basis of

extracting the energies around the vibration frequencies using filtering techniques.

The filters are thus used for pre-processing the input signal so that no energy is put

into the system at frequencies corresponding to the resonance modes of the system.

In this manner, the resonance modes of the system are not excited, leading to a

vibration-free motion of the system. This can be realised by employing either low-
pass or band-stop filters. In the former, the filter is designed with a cut-off frequency

lower than the first resonance mode of the system. In the latter case, band-stop filters

with centre frequencies at the resonance modes of the system are designed. This will

require one filter for each flexible mode of the system. The band-stop filters thus

designed are then implemented in cascade to pre-process the input signal. There are

various filter types such as Butterworth, Chebyshev and Elliptic that can be designed

and employed [24]. In this investigation, infinite impulse response (IIR) Butterworth

low-pass and band-stop filters are examined.
5. Implementation and results

The feed-forward control techniques were designed on the basis of vibration

frequencies and damping ratios of the flexible manipulator system. These were ob-

tained from the developed flexible manipulator environment using 10 elements, as

presented in the previous section. As demonstrated, the natural frequencies of the

system were obtained as 12, 35 and 65 Hz and the damping ratios were deduced as
0.026, 0.038 and 0.04 for the first three modes of vibration respectively. For evalu-

ation of robustness, the control techniques were designed based on 30% error toler-

ance in the natural frequencies. As a consequence, the system vibration modes were

considered as 15.6, 45.5 and 84.5 Hz under this situation. The input shapers and

filters thus designed were used for pre-processing the bang–bang torque input. The

shaped and filtered torque inputs were then applied to the system in an open-loop

configuration as shown in Fig. 4 to reduce the vibrations of the manipulator. In this

process, the shaped and filtered inputs were designed within the Matlab environment
with a sampling frequency of 500 Hz and implemented on a Pentium III 650 MHz

processor.

Simulation results of the response of the flexible manipulator to the shaped and

filtered inputs are presented in this section in the time and frequency domains.

To verify the performance of the control techniques, the results are examined in



Fig. 4. Block diagram of the feed-forward control configuration.
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comparison to the unshaped bang–bang torque input for a similar input level in each
case. Similarly, three system responses are investigated namely the hub-angle, hub-

velocity and end-point residual. Four criteria are used to evaluate the performances

of the control schemes:

(1) Level of vibration reduction at resonance modes. This is accomplished by com-

paring the shaped input response with the response to the unshaped input. The

results are presented in dB.

(2) The time response specifications. Parameters that are evaluated are settling time,
rise time and the magnitude of vibration.

(3) Robustness to parameter uncertainty. To examine the robustness of the tech-

niques, the system performance is assessed with 30% error tolerance in natural

frequencies.

(4) Computational complexity. Execution times to develop the shaped and filtered

inputs are calculated. This is an important aspect in real-time implementation

of the controller.
5.1. Input shaping

Using the parameters of the system, input shapers with two- and four-impulse

sequences for the first three modes of vibration were designed. The strengths and
time locations of the impulses were obtained by solving Eqs. (3) and (5) respectively.

Similarly, input shapers with error in natural frequencies were also evaluated. With

exact natural frequency, locations of the second impulse were obtained at 0.0385,

0.0143 and 0.0077 s for the three resonance modes respectively. On the other hand,

with error in natural frequencies, locations of the second impulse were obtained at

0.0296, 0.0110 and 0.0059 s. Strengths of the input shapers were accordingly ob-

tained and used with both the exact and erroneous natural frequencies. For digital

implementation of the input shapers, locations of the impulses were selected at the
nearest sampling time. Fig. 5 shows the shaped inputs and the corresponding SDs

using input shaping. It is noted that with higher number of impulses, the magnitudes

of the SD at resonance modes reduce. Moreover, the range of frequency covered

around the resonance modes increases.

Fig. 6 shows the responses of the flexible manipulator with the SD of the end-

point residual to the shaped input using two- and four-impulse sequences. It is noted

that the magnitudes of vibration at the resonance modes of the system, with the hub-

angle, hub-velocity and end-point residual responses, have significantly been re-



Fig. 5. Shaped torque inputs using two- and four-impulse sequences. (a) Time domain, (b) SD.
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duced. These can be observed by comparing the system responses to the unshaped

input (Fig. 3). The oscillations in the end-point residual response were found to have

almost reduced to zero. Lower magnitudes of the SDs as compared to the unshaped

input were achieved. The rise times of the hub-angle response were obtained as 0.370

and 0.387 s and the settling times as 0.820 and 0.878 s with the two- and four-impulse

sequences respectively. These results show that the hub-angle response is slower than

the response to the unshaped input. It is noted that the level of vibration reduction

increases with higher number of impulses, at the expense of increase in the delay in
the response of the system.

Fig. 7 shows the response of the manipulator to the shaped input using two- and

four-impulse sequences with 30% error in natural frequencies. This is used to ex-

amine the robustness of the technique. As noted, the level of reduction in the vi-

bration of the manipulator is slightly less than the case without error. However, it is

noted that significant vibration reduction was achieved, especially with a four-

impulse sequence.
5.2. Filtered inputs

Using the low-pass filter, the input energy at all frequencies above the cut-off
frequency can be attenuated. In this study, low-pass filters with cut-off frequency at

75% of the first vibration mode were designed. Thus, for the flexible manipulator, the

cut-off frequencies of the filters were selected as 9 and 11.7 Hz for the two cases of

exact and 30% erroneous natural frequencies respectively. On the other hand, using

the band-stop filter, the input energy at selected (dominant) resonance modes of the

system can be attenuated. In this study, band-stop filters with bandwidth of 10 Hz

were designed for the first three resonance modes. Similarly, the filters were designed



Fig. 6. Response of the flexible manipulator to the shaped inputs with exact natural frequencies. (a) Hub

angle, (b) hub velocity, (c) end-point residual, (d) SD of end-point residual.
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with consideration of exact and 30% error in natural frequencies. Moreover, the

filters were designed in each case with third and sixth orders. Thus, the effects of
various orders of filtered inputs on the performance of the manipulator were also

studied. The filtered torque inputs and the corresponding SDs with the low-pass and

band-stop filters are shown in Figs. 8 and 9 respectively. It is noted that the mag-

nitudes of the SDs at resonance modes reduced with higher filter orders.

Fig. 10 shows the responses of the flexible manipulator with the SD of the end-

point residual to the filtered torque using third and sixth order Butterworth low-pass

filters. It is noted from the responses that the system vibrations at resonance modes

have been considerably reduced in comparison to the bang–bang torque input. In
this case, a lower magnitude of the SD of the end-point residual was achieved. As

expected, the level of reduction increases with higher filter orders. Using this control

technique, the rise times of the hub-angle response were obtained as 0.368 and 0.374 s



Fig. 7. Response of the flexible manipulator to the shaped inputs with 30% error in natural frequencies. (a)

Hub angle, (b) hub velocity, (c) end-point residual, (d) SD of end-point residual.
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and the settling times as 0.826 and 0.858 s with third and sixth order filters re-

spectively. The robustness of the technique is demonstrated in Fig. 11, where the
system response to the filtered torque with erroneous natural frequencies is shown. It

is noted that relatively small reduction in the system vibration was achieved. This is

evidenced in the magnitude of the time response and SDs.

The flexible manipulator response with the SD of the end-point residual to the

third and sixth order Butterworth band-stop filtered inputs is shown in Fig. 12. It is

noted that considerable amount of vibration reduction at the first three vibration

modes was achieved in comparison with the response to the unshaped input. It is

noted that the level of reduction increases with the filter order. The rise times of the
hub-angle response were obtained as 0.368 and 0.370 s and the settling times as 0.812

and 0.830 s with third and sixth order filters respectively. Fig. 13 shows the response

of the system to the filtered input with 30% error in vibration frequencies. It is noted



Fig. 8. Filtered torque inputs using the Butterworth low-pass filters. (a) Time domain, (b) SD.

Fig. 9. Filtered torque inputs using the Butterworth band-stop filters. (a) Time domain, (b) SD.
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that the level of vibration of the system at resonance modes was not significantly

affected as compared to the unshaped input case. Moreover, no reduction was

achieved at the second and third vibration modes. It is also noted that not much

improvement was achieved with a higher filter order.
5.3. Comparative performance assessment

The level of vibration reduction achieved using the techniques with the end-point

residual at the resonance modes in comparison to the bang–bang torque input is

shown in Fig. 14. The result reveals that the highest performance in reduction of

vibration of the flexible manipulator is achieved with the input shaping technique.



Fig. 10. Response of the flexible manipulator to the low-pass filtered inputs with exact natural frequencies.

(a) Hub angle, (b) hub velocity, (c) end-point residual, (d) SD of end-point residual.
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This is observed as compared to the low-pass and band-stop filtered inputs at

the first three modes of vibration. The performance of the technique is also evi-

denced in the magnitude of vibration of the system in Figs. 6, 10 and 12. It is noted

that better performance in vibration reduction of the system is achieved with the

low-pass filtered input as compared to the band-stop filtered input. This is mainly

due to the higher level of input energy reduction achieved with the low-pass filter,
especially at the second and third vibration modes. However, the band-stop filtered

input gives higher reduction at the first mode of vibration. As expected, system

responses were slower with the shaped and filtered inputs as compared to the sys-

tem response to the unshaped input. It is also noted that the delay in the system

response increases with the number of impulses and filter order. Comparisons of

specifications of hub-angle responses given in previous sections demonstrate that the

band-stop filtered input results in the fastest system response. However, it is noted



Fig. 11. Response of the flexible manipulator to the low-pass filtered inputs with 30% error in natural

frequencies. (a) Hub angle, (b) hub velocity, (c) end-point residual, (d) SD of end-point residual.
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that the differences in rise and settling times among the techniques are negligibly

small.

The level of vibration reduction achieved using the techniques with erroneous

natural frequencies is shown in Fig. 15. It is revealed that the highest robustness to

parameter uncertainty is achieved with the input shaping technique. It is noted that
the shaped input can successfully handle errors in the natural frequency especially

with higher number of impulses. In this case, significant reduction in system vibra-

tion was achieved using a four-impulse sequence as compared to other control

techniques. This is further revealed by comparing the magnitude of vibration of the

system in Figs. 7, 11 and 13. The input shaping technique is more robust, as sig-

nificant reduction was achieved at the first mode of vibration, which is the most

dominant mode. The band-stop filtered input did not handle the error as only small

amount of reduction of the system vibration was achieved, and there was no re-



Fig. 12. Response of the flexible manipulator to the band-stop filtered inputs with exact natural fre-

quencies. (a) Hub angle, (b) hub velocity, (c) end-point residual, (d) SD of end-point residual.
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duction at the second and third modes of vibration. On the other hand, using the

low-pass filter, a significant amount of attenuation of the system vibration was
achieved at the second and third resonance modes. Moreover, the vibration reduc-

tion achieved with low-pass filtered inputs was higher than that with the shaped

input at these resonance modes.

To study the computational complexity of the input shaping and filtering tech-

niques, the execution times to develop the inputs were calculated. Within the Matlab

environment, the execution times for input shaping, low-pass filter and the band-pass

filter were obtained as 330, 110 and 130 ms respectively. This shows that develop-

ment of the low-pass filtered input requires the lowest processing time. The longest
processing time required for the input shaping technique is due to the convolution

that has to be performed in this process. This information is vital to consider in

designing and implementing such controllers in real time.



Fig. 13. Response of the flexible manipulator to the band-stop filtered inputs with 30% error in natural

frequencies. (a) Hub angle, (b) hub velocity, (c) end-point residual, (d) SD of end-point residual.

Fig. 14. Level of vibration reduction with the end-point residual response with exact natural frequencies

using IS (four impulse), LPF (sixth order) and BSF (sixth order).
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Fig. 15. Level of vibration reduction with the end-point residual response with 30% error in natural

frequencies using IS (four impulse), LPF (sixth order) and BSF (sixth order).
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6. Conclusion

The development of feed-forward control strategies for vibration control of a

flexible robot manipulator using input shaping, low-pass and band-stop filtered in-

put techniques has been presented. The dynamic model of the flexible manipulator
utilising the FE method has been considered. The system response to the unshaped

bang–bang torque input has been used to determine the parameters of the system for

evaluation of the control strategies. Significant reduction in the system vibrations has

been achieved with these control strategies. Performances of the techniques have

been evaluated in terms of level of vibration reduction, speed of response, robustness

and computational complexity. For the flexible manipulator and the specifications

used in designing the input shapers and filters, the input shaping technique has been

demonstrated to provide the best performance in vibration reduction, especially in
terms of robustness to errors. The low-pass filtered input has been shown to perform

better than the band-stop filtered input. However, the processing time in developing

an input shaping command is longer as compared to that required for the filtered

inputs.
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