29 research outputs found

    An Experimental Investigation of Ultraweak Photon Emission from Adult Murine Neural Stem Cells

    Get PDF
    Neurons like other living cells may have ultraweak photon emission (UPE) during neuronal activity. This study is aimed to evaluate UPE from neural stem cells (NSC) during their serial passaging and differentiation. We also investigate whether the addition of silver nanoparticles (AgNPs) or enhancement of UPE (by AgNPs or mirror) affect the differentiation of NSC. In our method, neural stem and progenitor cells of subventricular zone (SVZ) are isolated and expanded using the neurosphere assay. The obtained dissociated cells allocated and cultivated into three groups: groups: I: cell (control), II: cell + mirror, and III: cell + AgNPs. After seven days, the primary neurospheres were counted and their mean number was obtained. Serial passages continuous up to sixth passages in the control group. Differentiation capacity of the resulting neurospheres were evaluated in vitro by immunocytochemistry techniques. Measurement of UPE was carried out by photomultiplier tube (PMT) in the following steps: at the end of primary culture, six serial cell passages of the control group, before and after of the differentiation for 5 minutes. The results show that neither mirror nor AgNPs affect on the neurosphere number. The UPE of the NSC in the sixth subculturing passage was significantly higher than in the primary passage (P < 0.05). AgNPs significantly increased the UPE of the NSC compared to the control group before and after the differentiation (P < 0.05). Also, the treatment with AgNPs increased 44% neuronal differentiation of the harvested NSCs. UPE of NSC after the differentiation was significantly lower than that before the differentiation in each groups, which is in appropriate to the cell numbers (P < 0.0001). The mirror did not significantly increase UPE, neither before nor after the differentiation of NSC. As a conclusion, NSC have UPE-properties and the intensity is increased by serial passaging that are significant in the sixth passage. The AgNPs increases the UPE intensity of NSC that pushes more differentiation of NSC to the neurons. The mirror was not effective in enhancement of UPE. As a result, UPE measurement may be suitable for assessing and studying the effects of nanoparticles in living cells and neurons.This work was supported by grant No. 94-01-01-10157 from Shiraz University of Medical Sciences, Shiraz, Iran. This article was a part of the thesis written by Esmaeil Fereydoni, MSc. student of Anatomy

    Bacterial Contamination of Mobile Phones Carried by Medical Staff in Maternity, Neonatal, and ICU Wards of Shahid Beheshti and Imam Sajjad Hospitals in Yasuj

    Get PDF
    The use of mobile phones by healthcare personnel, doctors, patients, and patients’ companions are unavoidable in health centers, especially in hospitals. Besides being rarely clean, the mobile phone is a potential reservoir of disease and pathogens and hospital infections on bedside of hospitalized patients. In this study, the microbial contamination of mobile phones and potential of transmitting infections and their antibiotic resistance pattern were investigated. In this descriptive cross-sectional study, a questionnaire was prepared to assess the importance of maternity, neonatal, and intensive care unit (ICU) staff attention to how to use and clean the cell phones in terms of valid sources. Samples were taken from 116 cell phones using a sterile swab. The standard plate count was used to detect the existing bacteria, and the antimicrobial resistance patterns of isolated bacteria were determined by standard methods. The microbial culture experiments indicated that 107 cell phones had microbial contamination, accounting for 92.24% of mobile phones. From 132 isolated strains, 115 strains (87.12%) were gram-positive while 17 were Gram-negative (12.88%). Furthermore, 67 (57.76%), 9 (7.7%), 4 (3.45%), 10 (8.62%), 12 (10.35%), 22 (19%), and 8 (6.9%) strains were coagulase-negative staphylococci, Pseudomonas aeruginosa, Staphylococcus aureus, Corynebacterium, Bacillus, Streptococcus, and Escherichia coli, respectively. The results of this study indicated that cell phones were contaminated with different types of bacteria, and that all species isolated partially played an important role in the development of hospital-acquired and opportunistic infections. Therefore, continuous disinfection of mobile phones and non-use or limited use of them in the hospitals are recommended

    Indoor environment assessment of special wards of educational hospitals for the detection of fungal contamination sources: A multi-center study (2019-2021)

    Get PDF
    Background and Purpose: The hospital environment was reported as a real habitat for different microorganisms, especially mold fungi. On the other hand, these opportunistic fungi were considered hospital-acquired mold infections in patients with weak immune status. Therefore, this multi-center study aimed to evaluate 23 hospitals in 18 provinces of Iran for fungal contamination sources.Materials and Methods: In total, 43 opened Petri plates and 213 surface samples were collected throughout different wards of 23 hospitals. All collected samples were inoculated into Sabouraud Dextrose Agar containing Chloramphenicol (SC), and the plates were then incubated at 27-30ºC for 7-14 days.Results: A total of 210 fungal colonies from equipment (162, 77.1%) and air (48,22.9%) were identified. The most predominant isolated genus was Aspergillus (47.5%),followed by Rhizopus (14.2%), Mucor (11.7%), and Cladosporium (9.2%). Aspergillus(39.5%), Cladosporium (16.6%), as well as Penicillium and Sterile hyphae (10.4% each), were the most isolates from the air samples. Moreover, intensive care units (38.5%) and operating rooms (21.9%) had the highest number of isolated fungal colonies. Out of 256 collected samples from equipment and air, 163 (63.7%) were positive for fungal growth.The rate of fungal contamination in instrument and air samples was 128/213 (60.1%) and 35/43 (81.2%), respectively. Among the isolated species of Aspergillus, A. flavus complex (38/96, 39.6%), A. niger complex (31/96, 32.3%), and A. fumigatus complex (15/96, 15.6%) were the commonest species.Conclusion: According to our findings, in addition to air, equipment and instrument should be considered among the significant sources of fungal contamination in the indoor environment of hospitals. Airborne fungi, Hospital, Indoor air, Equipment, Sources of fungal contamination in the indoor environment of hospitals

    The global burden of cancer attributable to risk factors, 2010-19 : a systematic analysis for the Global Burden of Disease Study 2019

    Get PDF
    Background Understanding the magnitude of cancer burden attributable to potentially modifiable risk factors is crucial for development of effective prevention and mitigation strategies. We analysed results from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019 to inform cancer control planning efforts globally. Methods The GBD 2019 comparative risk assessment framework was used to estimate cancer burden attributable to behavioural, environmental and occupational, and metabolic risk factors. A total of 82 risk-outcome pairs were included on the basis of the World Cancer Research Fund criteria. Estimated cancer deaths and disability-adjusted life-years (DALYs) in 2019 and change in these measures between 2010 and 2019 are presented. Findings Globally, in 2019, the risk factors included in this analysis accounted for 4.45 million (95% uncertainty interval 4.01-4.94) deaths and 105 million (95.0-116) DALYs for both sexes combined, representing 44.4% (41.3-48.4) of all cancer deaths and 42.0% (39.1-45.6) of all DALYs. There were 2.88 million (2.60-3.18) risk-attributable cancer deaths in males (50.6% [47.8-54.1] of all male cancer deaths) and 1.58 million (1.36-1.84) risk-attributable cancer deaths in females (36.3% [32.5-41.3] of all female cancer deaths). The leading risk factors at the most detailed level globally for risk-attributable cancer deaths and DALYs in 2019 for both sexes combined were smoking, followed by alcohol use and high BMI. Risk-attributable cancer burden varied by world region and Socio-demographic Index (SDI), with smoking, unsafe sex, and alcohol use being the three leading risk factors for risk-attributable cancer DALYs in low SDI locations in 2019, whereas DALYs in high SDI locations mirrored the top three global risk factor rankings. From 2010 to 2019, global risk-attributable cancer deaths increased by 20.4% (12.6-28.4) and DALYs by 16.8% (8.8-25.0), with the greatest percentage increase in metabolic risks (34.7% [27.9-42.8] and 33.3% [25.8-42.0]). Interpretation The leading risk factors contributing to global cancer burden in 2019 were behavioural, whereas metabolic risk factors saw the largest increases between 2010 and 2019. Reducing exposure to these modifiable risk factors would decrease cancer mortality and DALY rates worldwide, and policies should be tailored appropriately to local cancer risk factor burden. Copyright (C) 2022 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 license.Peer reviewe

    Effects of Various Substrates and Foliar Application of Humic Acid ‎on Growth and some Qualitative and Quantitative Characteristics of Tomato (Lycopersicon esculentum) Seedling

    No full text
    Introduction: Successful greenhouse and nursery production of plants is largely dependent on the chemical and physical properties of the growing substrate. An ideal potting substrate should be free of weeds and diseases, heavy enough to avoid frequent tipping over and yet light enough to facilitate handling and shipping. The substrate should also be well drained and yet retain sufficient water to reduce the frequency of watering. Other parameters to consider include cost, availability, consistency between batches and stability in the media over time. Greenhouse crops in general, have higher nutrient demands than field grown crops. Therefore, in order to optimize production it is essential to focus on the growing substrate and fertilization. The physical properties of the growing medium are important parameters for successful plant growth, as these are related to the ability to adequately store and supply air and water to plants. Humic acid is a principal component of humic substances, which are the major organic constituents of soil (humus), peat and coal. It is also a major organic constituent of many upland streams, dystrophic lakes, and ocean water. It is produced by biodegradation of dead organic matter. It is not a single acid, but it is a complex mixture of many different acids containing carboxyl and phenolate groups so that the mixture behaves functionally as a dibasic acid or occasionally as a tribasic acid. Humic acids can form complexes with ions that are commonly found in the environment creating humic colloids. Humic and fulvic acids (fulvic acids are humic acids with lower molecular weight and higher oxygen content than other humic acids) are commonly used as a soil supplement in agriculture. Humic Plus contains humic acid, fulvic acid, macro micro nutrients and proprietary constituents essential for plant growth. Organic matter soil amendments have been known by farmers to be beneficial to plant growth for longer than recorded history. However, the chemistry and function of the organic matter have been a subject of controversy since humans began their postulating about it in the 18th century. Selection of the proper media components is critical to the successful production of plants. So, the objective of this study was to assess the effect of humic acid foliar application and various substrate on quantitative and qualitative characteristics of tomato seedling. Material and Methods: The experiment was conducted in a greenhouse at Bardsir Faculty of Agriculture , Shahid Bahonar University of Kerman in 2015, as a factorial arrangement based on completely randomized design with five replications. The experimental treatments were substrate in 7 levels (peat, coco-peat, leaf-soil, compost, vermi-compost, manure and clay soil), humic acid in two levels (foliar application and non- foliar application). After preparation of substrates, plastic boxes with 12 cm diameter and 10 cm height were chosen. After extracting gravity water, tomato (cv. Canyon) seeds were sown in pots. Rain irrigation was done daily. Foliar application of humic acid with concentration of 0.001 liter was performed from seedling emergence to transplanting every two days. The germinated seeds was daily counted and number and rate of seed emergence was estimated. Plant height, stem diameter, number of internodes, leaf area, shoot and root dry matter and chlorophyll contents were calculated at transplanting time of seedling. Results and Discussion: The substrate treatment had a significant effect on rate and percent of germination, plant height, shoot dry matter, leaf area, number of internodes and, chlorophyll a and carotenoid contents. According to the results, the greatest and smallest rate and percent of germination ‎was found in peat and manure treatments, respectively. Also the greatest shoot dry matter (1.17 g), leaf area (125.9 ‎cm plant-1), number of internodes (6.19), plant height (13.51 cm) and chlorophyll a concentration (2.55 µg/ml) ‎were observed for peat substrate. Manure and clay soil substrates showed the smallest of ‎these measurements and carotenoid contents. It seems that physical characteristics of peat was better than other substrates. Plant height, shoot dry matter, leaf area, number of internodes, chlorophyll a and carotenoid contents showed a significant effect by humic acid application. Foliar application of humic acid significantly increased the mentioned traits. Conclusion: The results illustrated that between substrates in this study, peat was the best for seedling production of tomato. Foliar application of humic acid had a positive effect in improving growth characteristics of tomato seedling

    Investigation of Microbial Contamination in Surfaces and Waterlines of Dental Units in Terms of Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli, and Coliforms

    No full text
    Background and aim: Water supply systems and various parts of dentistry unit have the ability to aggregate biofilms and thus the transmission of dangerous diseases to staff and patients. The aim of this study was to determine the bacterial contamination of surfaces and water lines of dental units of health center (Qods 2) in Divandareh city. Material and methods: This cross-sectional descriptive study was conducted on dental units of the health center (Qods 2) in Divandareh city in 2019. 125 samples were collected from different parts of the units including unit lamp handle, lamp ON/OFF power button, open/close bolt of unit water, setting switch button (before and after disinfecting), and the inlet and outlet water of units. The samples were tested for Staphylococcus aureus, Pseudomonas aeruginosa, Coliforms and Escherichia coli. Results: The results of this study showed that all samples collected from the studied parts of the units including unit lamp handle, lamp ON/OFF power button, open/close bolt of unit water, and setting switch button were positive as presence of Staphylococcus aureus, Pseudomonas aeruginosa, and coliforms before and after disinfection. Also, the unit lamp handle and setting switch button were positive as Escherichia coli. The inlet and outlet water were also positive for all the studied bacteria. The number of Staphylococcus aureus bacteria in the handle of the unit lamp before disinfection (210±80.5 CFU/ml) and in the ON/OFF button of the lamp after disinfection (300±82.6 CFU/ml) were higher than the permissible amount (200 CFU/ml). Also, the number of Pseudomonas aeruginosa bacteria detected in setting switch button, before disinfection, was higher (200±75.2) than the allowable value. Conclusion: According to the obtained results, the contamination level of water and surface of the studied dental units was high. Also, identifying of the considerable number of bacteria at the different surfaces of the units, indicating the improper use of the disinfectants and the possibility of biofilms presence in the unit waterlines

    Climatic zonation and land suitability determination for saffron in Khorasan-Razavi province using data mining algorithms

    No full text
    Yield prediction for agricultural crops plays an important role in export-import planning, purchase guarantees, pricing, secure profits and increasing in agricultural productivity. Crop yield is affected by several parameters especially climate. In this study, the saffron yield in the Khorasan-Razavi province was evaluated by different classification algorithms including artificial neural networks, regression models, local linear trees, decision trees, discriminant analysis, random forest, support vector machine and nearest neighbor analysis. These algorithms analyzed data for 20 years (1989-2009) including 11 climatological parameters. The results showed that a few numbers of climatological parameters affect the saffron yield. The minimum, mean and maximum of temperature, had the highest positive correlations and the relative humidity of 6.5h, sunny hours, relative humidity of 18.5h, evaporation, relative humidity of 12.5h and absolute humidity had the highest negative correlations with saffron cultivation areas, respectively. In addition, in classification of saffron cultivation areas, the discriminant analysis and support vector machine had higher accuracies. The correlation between saffron cultivation area and saffron yield values was relatively high (r=0.38). The nearest neighbor analysis had the best prediction accuracy for classification of cultivation areas. For this algorithm the coefficients of determination were 1 and 0.944 for training and testing stages, respectively. However, the algorithms accuracy for prediction of crop yield from climatological parameters was low (the average coefficients of determination equal to 0.48 and 0.05 for training and testing stages). The best algorithm i.e. nearest neighbor analysis had coefficients of determination equal to 1 and 0.177 for saffron yield prediction. Results showed that, using climatological parameters and data mining algorithms can classify cultivation areas. By this way it is possible to identify areas that have similar climate to prone areas and recognize suitable areas for cultivation

    Modeling, optimization and efficient use of MMT K10 nanoclay for Pb (II) removal using RSM, ANN and GA

    No full text
    Abstract Regarding the long-term toxic effects of Pb (II) ions on human health and its bioaccumulation property, taking measures for its reduction in the environment is necessary. The MMT-K10 (montmorillonite-k10) nanoclay was characterized by XRD, XRF, BET, FESEM, and FTIR. The effects of pH, initial concentrations, reaction time, and adsorbent dosage were studied. The experimental design study was carried out with RSM-BBD method. Results prediction and optimization were investigated with RSM and artificial neural network (ANN)-genetic algorithm (GA) respectively. The RSM results showed that the experimental data followed the quadratic model with the highest regression coefficient value (R2 = 0.9903) and insignificant lack of fit (0.2426) showing the validity of the Quadratic model. The optimal adsorption conditions were obtained at pH 5.44, adsorbent = 0.98 g/l, concentration of Pb (II) ions = 25 mg/L, and reaction time = 68 min. Similar optimization results were observed by RSM and artificial neural network-genetic algorithm methods. The experimental data revealed that the process followed the Langmuir isotherm and the maximum adsorption capacity was 40.86 mg/g. Besides, the kinetic data indicated that the results fitted with the pseudo-second-order model. Hence, the MMT-K10 nanoclay can be a suitable adsorbent due to having a natural source, simple and inexpensive preparation, and high adsorption capacity
    corecore