11 research outputs found

    RÎle du récepteur nucléaire FXR dans la régulation de la production de GLP-1 : nouvelle cible thérapeutique dans le traitement du diabÚte de type 2 ?

    Get PDF
    Originally identified as dietary lipid detergents, bile acids (BA) are now recognized as signaling molecules which bind to the transmembrane receptor TGR5 and the nuclear receptor FXR (Farnesoid X Receptor). Upon binding to TGR5 at the surface of enteroendocrine L cells, bile acids (BA) promote the secretion of the incretin GLP-1 which potentiates the glucose-induced insulin secretion by pancreatic beta-cells. More than 50% of the insulin secretion in response to glucose is mediated by GLP-1 and the other incretin Glucose-dependent Insulinotropic Polypeptide (GIP). Once secreted, GLP-1 is rapidly (2-3 minutes) degraded by the endothelial enzyme Dipeptydil Peptidase 4 (DPP4). GLP-1 analogues and DPP4 inhibitors are successfully used for the treatment of T2D. FXR is a ligand-activated nuclear receptor highly expressed in the liver and in the distal intestine. FXR controls BA, lipid and glucose metabolism. Whether FXR is expressed, functional in intestinal enteroendocrine L cells and in which extend its activation affects GLP-1 production are not yet reported. Encouraging data were obtained during my M2 training course. The aim of my thesis was thus to assess whether FXR in enteroendocrines cells could participate in the control of the deregulation of glucose homeostasis. Multiple in vitro, ex vivo and in vivo human and murine models allowed us to show that FXR is present and functional in L cells. FXR activation decreases GLP-1 production and secretion in L cells by inhibiting glycolysis pathway through an interference with the carbohydrate responsive transcription factor ChREBP. Finally, I identified an additional mechanism of action of the bile acid sequestrant Colesevelam, a molecule currently successfully used in USA for treating type 2 diabetic patients.L’homĂ©ostasie Ă©nergĂ©tique ou ‘balance Ă©nergĂ©tique’ est l’équilibre qui s’établit chez l’Homme et l’animal adulte entre la prise quotidienne de nutriments sous la forme de glucides, de lipides ou de protĂ©ines et leur oxydation pour ne produire que la quantitĂ© Ă©nergĂ©tique strictement nĂ©cessaire. Pour maintenir cette balance l’organisme doit recueillir en permanence des signaux nerveux, mĂ©taboliques ou hormonaux de la part de cellules spĂ©cifiques. Ces senseurs des besoins Ă©nergĂ©tiques transmettent alors Ă  des centres rĂ©gulateurs leurs informations qui en retour, par voie hormonale ou nerveuse, informent les organes effecteurs des mesures Ă  prendre pour stocker, produire ou consommer l’énergie. Les trois principaux centres de cette balance sont 1/ le cerveau, centre intĂ©grateur de l’information ; 2/ un groupe d’organes effecteurs parmi lesquels le foie, le tissu adipeux, les muscles squelettiques, le pancrĂ©as et 3/ un centre senseur de la qualitĂ© et de la quantitĂ© des aliments, le tractus gastrointestinal (Migrenne 2006). En plus d’ĂȘtre la source d’énergie nĂ©cessaire Ă  la vie des cellules, les nutriments tels que les acides gras, le cholestĂ©rol ou encore le glucose sont aussi des molĂ©cules de signalisation cellulaire Ă  la fois par leur fixation Ă  des rĂ©cepteurs membranaires mais aussi via des rĂ©cepteurs nuclĂ©aires. Un dĂ©sĂ©quilibre dans l’homĂ©ostasie Ă©nergĂ©tique dĂ» Ă  une alimentation dĂ©sĂ©quilibrĂ©e, Ă  un manque d’exercice physique ou Ă  des facteurs gĂ©nĂ©tiques est une caractĂ©ristique de l’obĂ©sitĂ© et de complications telles que le diabĂšte de type 2 et les maladies cardiovasculaires (Hill, 2006). Au cours de ma thĂšse je me suis intĂ©ressĂ© Ă  l’intestin pour son rĂŽle de rĂ©gulateur de l’homĂ©ostasie Ă©nergĂ©tique dans un contexte physiologique ou physiopathologique d’obĂ©sitĂ© via sa capacitĂ© Ă  sĂ©crĂ©ter l’incrĂ©tine Glucagon-Like Peptide-1 (GLP-1) en rĂ©ponse au glucose et aux acides biliaires. J’ai Ă©tudiĂ© plus particuliĂšrement le rĂŽle du rĂ©cepteur nuclĂ©aire en tant que senseurs molĂ©culaires des acides biliaires FXR dans les cellules sĂ©crĂ©trices de cette incrĂ©tine car Ă  l’heure actuelle rien n’était connu quant Ă  son rĂŽle ni mĂȘme quant Ă  son expression dans la cellule L. Pour cela, j’ai utilisĂ© des lignĂ©es cellulaires murines et humaines oĂč j’ai mis au point les conditions expĂ©rimentales pour rĂ©pondre aux questions posĂ©es. GrĂące Ă  des ARN d’intestins issus de diffĂ©rents modĂšles de souris la relevance chez le rongeur a Ă©tĂ© testĂ©e. La relevance de ces rĂ©sultats sur des biopsies intestinales humaine a Ă©galement Ă©tĂ© testĂ©e. GrĂące Ă  ces outils, j'ai pu montrĂ© que FXR dans les cellules L Ă©tait fonctionnel et que son activation interfĂ©rait avec la voie de la glycolyse entrainant moins de synthĂšse et de sĂ©crĂ©tion de GLP-1. Cela nous a permis de proposer un nouveau mĂ©canisme molĂ©culaire par lequel les sĂ©questrants des acides biliaires exercent leur effets bĂ©nĂ©fiques chez des patients atteints de diabĂšte de type 2

    Acute myocardial infarction in a patient with hypofibrinogenemia: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Congenital fibrinogen deficiency is a rare coagulation disorder usually responsible for hemorrhagic diathesis. However, it can be associated with thrombosis and there have been limited reports of arterial thrombotic complications in these patients.</p> <p>Case presentation</p> <p>A 42-year-old Tunisian man with congenital hypofibrinogenemia and no cardiovascular risk factors presented with new onset prolonged angina pectoris. An electrocardiogram showed features of inferior acute myocardial infarction. His troponin levels had reached 17 ng/L. Laboratory findings confirmed hypofibrinogenemia and ruled out thrombophilia. Echocardiography was not useful in providing diagnostic elements but did show preserved left ventricular function. Coronary angiography was not performed and our patient did not receive any anticoagulant treatment due to the major risk of bleeding. Magnetic resonance imaging confirmed myocardial necrosis. Our patient was managed with aspirin, a beta-blocker, an angiotensin-converting enzyme inhibitor and statin medication. The treatment was well tolerated and no ischemic recurrence was detected.</p> <p>Conclusion</p> <p>Although coronary thrombosis is a rare event in patients with fibrinogen deficiency, this condition is of major interest in view of the difficulties observed in managing these patients.</p

    A year of genomic surveillance reveals how the SARS-CoV-2 pandemic unfolded in Africa.

    Get PDF
    The progression of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic in Africa has so far been heterogeneous, and the full impact is not yet well understood. In this study, we describe the genomic epidemiology using a dataset of 8746 genomes from 33 African countries and two overseas territories. We show that the epidemics in most countries were initiated by importations predominantly from Europe, which diminished after the early introduction of international travel restrictions. As the pandemic progressed, ongoing transmission in many countries and increasing mobility led to the emergence and spread within the continent of many variants of concern and interest, such as B.1.351, B.1.525, A.23.1, and C.1.1. Although distorted by low sampling numbers and blind spots, the findings highlight that Africa must not be left behind in the global pandemic response, otherwise it could become a source for new variants

    Role of the nuclear receptor FXR on the regulation of GLP-1 production by L-cells : a new therapeutic target for type 2 diabetes ?

    No full text
    L’homĂ©ostasie Ă©nergĂ©tique ou ‘balance Ă©nergĂ©tique’ est l’équilibre qui s’établit chez l’Homme et l’animal adulte entre la prise quotidienne de nutriments sous la forme de glucides, de lipides ou de protĂ©ines et leur oxydation pour ne produire que la quantitĂ© Ă©nergĂ©tique strictement nĂ©cessaire. Pour maintenir cette balance l’organisme doit recueillir en permanence des signaux nerveux, mĂ©taboliques ou hormonaux de la part de cellules spĂ©cifiques. Ces senseurs des besoins Ă©nergĂ©tiques transmettent alors Ă  des centres rĂ©gulateurs leurs informations qui en retour, par voie hormonale ou nerveuse, informent les organes effecteurs des mesures Ă  prendre pour stocker, produire ou consommer l’énergie. Les trois principaux centres de cette balance sont 1/ le cerveau, centre intĂ©grateur de l’information ; 2/ un groupe d’organes effecteurs parmi lesquels le foie, le tissu adipeux, les muscles squelettiques, le pancrĂ©as et 3/ un centre senseur de la qualitĂ© et de la quantitĂ© des aliments, le tractus gastrointestinal (Migrenne 2006). En plus d’ĂȘtre la source d’énergie nĂ©cessaire Ă  la vie des cellules, les nutriments tels que les acides gras, le cholestĂ©rol ou encore le glucose sont aussi des molĂ©cules de signalisation cellulaire Ă  la fois par leur fixation Ă  des rĂ©cepteurs membranaires mais aussi via des rĂ©cepteurs nuclĂ©aires. Un dĂ©sĂ©quilibre dans l’homĂ©ostasie Ă©nergĂ©tique dĂ» Ă  une alimentation dĂ©sĂ©quilibrĂ©e, Ă  un manque d’exercice physique ou Ă  des facteurs gĂ©nĂ©tiques est une caractĂ©ristique de l’obĂ©sitĂ© et de complications telles que le diabĂšte de type 2 et les maladies cardiovasculaires (Hill, 2006). Au cours de ma thĂšse je me suis intĂ©ressĂ© Ă  l’intestin pour son rĂŽle de rĂ©gulateur de l’homĂ©ostasie Ă©nergĂ©tique dans un contexte physiologique ou physiopathologique d’obĂ©sitĂ© via sa capacitĂ© Ă  sĂ©crĂ©ter l’incrĂ©tine Glucagon-Like Peptide-1 (GLP-1) en rĂ©ponse au glucose et aux acides biliaires. J’ai Ă©tudiĂ© plus particuliĂšrement le rĂŽle du rĂ©cepteur nuclĂ©aire en tant que senseurs molĂ©culaires des acides biliaires FXR dans les cellules sĂ©crĂ©trices de cette incrĂ©tine car Ă  l’heure actuelle rien n’était connu quant Ă  son rĂŽle ni mĂȘme quant Ă  son expression dans la cellule L. Pour cela, j’ai utilisĂ© des lignĂ©es cellulaires murines et humaines oĂč j’ai mis au point les conditions expĂ©rimentales pour rĂ©pondre aux questions posĂ©es. GrĂące Ă  des ARN d’intestins issus de diffĂ©rents modĂšles de souris la relevance chez le rongeur a Ă©tĂ© testĂ©e. La relevance de ces rĂ©sultats sur des biopsies intestinales humaine a Ă©galement Ă©tĂ© testĂ©e. GrĂące Ă  ces outils, j'ai pu montrĂ© que FXR dans les cellules L Ă©tait fonctionnel et que son activation interfĂ©rait avec la voie de la glycolyse entrainant moins de synthĂšse et de sĂ©crĂ©tion de GLP-1. Cela nous a permis de proposer un nouveau mĂ©canisme molĂ©culaire par lequel les sĂ©questrants des acides biliaires exercent leur effets bĂ©nĂ©fiques chez des patients atteints de diabĂšte de type 2.Originally identified as dietary lipid detergents, bile acids (BA) are now recognized as signaling molecules which bind to the transmembrane receptor TGR5 and the nuclear receptor FXR (Farnesoid X Receptor). Upon binding to TGR5 at the surface of enteroendocrine L cells, bile acids (BA) promote the secretion of the incretin GLP-1 which potentiates the glucose-induced insulin secretion by pancreatic beta-cells. More than 50% of the insulin secretion in response to glucose is mediated by GLP-1 and the other incretin Glucose-dependent Insulinotropic Polypeptide (GIP). Once secreted, GLP-1 is rapidly (2-3 minutes) degraded by the endothelial enzyme Dipeptydil Peptidase 4 (DPP4). GLP-1 analogues and DPP4 inhibitors are successfully used for the treatment of T2D. FXR is a ligand-activated nuclear receptor highly expressed in the liver and in the distal intestine. FXR controls BA, lipid and glucose metabolism. Whether FXR is expressed, functional in intestinal enteroendocrine L cells and in which extend its activation affects GLP-1 production are not yet reported. Encouraging data were obtained during my M2 training course. The aim of my thesis was thus to assess whether FXR in enteroendocrines cells could participate in the control of the deregulation of glucose homeostasis. Multiple in vitro, ex vivo and in vivo human and murine models allowed us to show that FXR is present and functional in L cells. FXR activation decreases GLP-1 production and secretion in L cells by inhibiting glycolysis pathway through an interference with the carbohydrate responsive transcription factor ChREBP. Finally, I identified an additional mechanism of action of the bile acid sequestrant Colesevelam, a molecule currently successfully used in USA for treating type 2 diabetic patients

    The nuclear receptor FXR inhibits Glucagon-Like Peptide-1 secretion in response to microbiota-derived Short-Chain Fatty Acids.

    No full text
    The gut microbiota participates in the control of energy homeostasis partly through fermentation of dietary fibers hence producing short-chain fatty acids (SCFAs), which in turn promote the secretion of the incretin Glucagon-Like Peptide-1 (GLP-1) by binding to the SCFA receptors FFAR2 and FFAR3 on enteroendocrine L-cells. We have previously shown that activation of the nuclear Farnesoid X Receptor (FXR) decreases the L-cell response to glucose. Here, we investigated whether FXR also regulates the SCFA-induced GLP-1 secretion. GLP-1 secretion in response to SCFAs was evaluated ex vivo in murine colonic biopsies and in colonoids of wild-type (WT) and FXR knock-out (KO) mice, in vitro in GLUTag and NCI-H716 L-cells activated with the synthetic FXR agonist GW4064 and in vivo in WT and FXR KO mice after prebiotic supplementation. SCFA-induced GLP-1 secretion was blunted in colonic biopsies from GW4064-treated mice and enhanced in FXR KO colonoids. In vitro FXR activation inhibited GLP-1 secretion in response to SCFAs and FFAR2 synthetic ligands, mainly by decreasing FFAR2 expression and downstream Gαq-signaling. FXR KO mice displayed elevated colonic FFAR2 mRNA levels and increased plasma GLP-1 levels upon local supply of SCFAs with prebiotic supplementation. Our results demonstrate that FXR activation decreases L-cell GLP-1 secretion in response to inulin-derived SCFA by reducing FFAR2 expression and signaling. Inactivation of intestinal FXR using bile acid sequestrants or synthetic antagonists in combination with prebiotic supplementation may be a promising therapeutic approach to boost the incretin axis in type 2 diabetes

    Farnesoid X receptor inhibits glucagon-like peptide-1 production by enteroendocrine L cells.

    Get PDF
    Bile acids are signalling molecules, which activate the transmembrane receptor TGR5 and the nuclear receptor FXR. BA sequestrants (BAS) complex bile acids in the intestinal lumen and decrease intestinal FXR activity. The BAS-BA complex also induces glucagon-like peptide-1 (GLP-1) production by L cells which potentiates ÎČ-cell glucose-induced insulin secretion. Whether FXR is expressed in L cells and controls GLP-1 production is unknown. Here, we show that FXR activation in L cells decreases proglucagon expression by interfering with the glucose-responsive factor Carbohydrate-Responsive Element Binding Protein (ChREBP) and GLP-1 secretion by inhibiting glycolysis. In vivo, FXR deficiency increases GLP-1 gene expression and secretion in response to glucose hence improving glucose metabolism. Moreover, treatment of ob/ob mice with the BAS colesevelam increases intestinal proglucagon gene expression and improves glycaemia in a FXR-dependent manner. These findings identify the FXR/GLP-1 pathway as a new mechanism of BA control of glucose metabolism and a pharmacological target for type 2 diabetes
    corecore