827 research outputs found

    Examining the influence of passive design approaches on NZEBs: potential net zero healthcare buildings implementation in Malaysia

    Get PDF
    Nowadays, net-zero energy buildings (NZEBs) concept has gained considerable attention not only between the developed countries, but also among the developing countries including Malaysia. The rapid development in Malaysia, especially in the construction of healthcare buildings needs to be given due attention since these developments lead to all sorts of environmental problems. As the number of healthcare buildings increases, the energy consumes to operate these buildings will increase. The consequences of uncontrollable energy consumption may result in the increased volume of carbon dioxide emissions as well as depletion of natural resources. Thus, NZEBs has emerged as a proactive concept to confront with these issues. Therefore, the purpose of this paper is to examine the influence of passive design approaches on NZEBs as well as the potential of net zero healthcare buildings implementation in Malaysia based on a review of the existing literature and by utilising semi-structured interviews with 3 experienced architects. The result of this paper indicates that there are four main passive design components has strong influences on NZEBs which are building orientation, shading devices, ventilation, and thermal insulation. These practices are being actively practiced in Malaysia construction industry; thus, it shows that net zero energy healthcare buildings are potential to be designed in Malaysia. The study has gone some way towards enhancing our understanding of the significance of passive design approaches towards net zero healthcare buildings for future implementation in Malaysia context

    Developmental Defects of Enamel in Primary Teeth and Association with Early Life Course Events: A Study of 6--36 Month old Children in Manyara, Tanzania.

    Get PDF
    Children with low birth weight show an increased prevalence of developmental defects of enamel in the primary dentition that subsequently may predispose to early childhood caries (ECC).Focusing 6--36 months old, the purpose of this study was to assess the frequency of enamel defects in the primary dentition and identify influences of early life course factors; socio-demographics, birth weight, child's early illness episodes and mothers' perceived size of the child at birth, whilst controlling for more recent life course events in terms of current breastfeeding and oral hygiene. A cross-sectional study was conducted in the high fluoride area of Manyara, northern Tanzania including 1221 child-mother pairs who attended Reproductive and Child Health (RCH) clinics for immunization and/or growth monitoring. After the primary caregivers had completed face to face interviews at the health care facility, children underwent oral clinical examination whereby ECC and developmental defects of enamel were recorded using field criteria. All erupted teeth were examined and the enamel defects were assessed on buccal surfaces according to the modified DDE Index. The prevalence of enamel defects was 33.3%. Diffuse opacities were the most common defects identified (23.1%), followed by hypoplasia (7.6%) and demarcated opacities (5.0%). The most frequently affected teeth were the upper central incisors (29.0% - 30.5%), whereas lower central incisors (4.3% to 4.5%) were least frequently affected. Multiple logistic regression analysis, adjusting for confounding the factors revealed that having normal birth weight (equal or more than 2500 g) associated with lower odds of having enamel hypoplasia [OR 0.22 (95% CI 0.1-0.7)]. No statistically significant association occurred between birth weight and diffuse opacities, demarcated opacities or combined DDE. Children with the history of low birth weight were more likely than their normal birth weight counterparts to present with enamel hypoplasia. In view of the frequent occurrence of enamel defects and the fact that hypoplasia may constitute a risk factor for future ECC, enamel defects should be included as a dental health indicator in epidemiological studies of children in northern Tanzania

    Spatial heterogeneity of habitat suitability for Rift Valley fever occurrence in Tanzania: an ecological niche modelling approach

    Get PDF
    Despite the long history of Rift Valley fever (RVF) in Tanzania, extent of its suitable habitat in the country remains unclear. In this study we investigated potential effects of temperature, precipitation, elevation, soil type, livestock density, rainfall pattern, proximity to wild animals, protected areas and forest on the habitat suitability for RVF occurrence in Tanzania. Presence-only records of 193 RVF outbreak locations from 1930 to 2007 together with potential predictor variables were used to model and map the suitable habitats for RVF occurrence using ecological niche modelling. Ground-truthing of the model outputs was conducted by comparing the levels of RVF virus specific antibodies in cattle, sheep and goats sampled from locations in Tanzania that presented different predicted habitat suitability values. Habitat suitability values for RVF occurrence were higher in the northern and central-eastern regions of Tanzania than the rest of the regions in the country. Soil type and precipitation of the wettest quarter contributed equally to habitat suitability (32.4% each), followed by livestock density (25.9%) and rainfall pattern (9.3%). Ground-truthing of model outputs revealed that the odds of an animal being seropositive for RVFV when sampled from areas predicted to be most suitable for RVF occurrence were twice the odds of an animal sampled from areas least suitable for RVF occurrence (95% CI: 1.43, 2.76, p < 0.001). The regions in the northern and central-eastern Tanzania were more suitable for RVF occurrence than the rest of the regions in the country. The modelled suitable habitat is characterised by impermeable soils, moderate precipitation in the wettest quarter, high livestock density and a bimodal rainfall pattern. The findings of this study should provide guidance for the design of appropriate RVF surveillance, prevention and control strategies which target areas with these characteristics

    Future therapeutic targets in rheumatoid arthritis?

    Get PDF
    Rheumatoid arthritis (RA) is a chronic inflammatory disease characterized by persistent joint inflammation. Without adequate treatment, patients with RA will develop joint deformity and progressive functional impairment. With the implementation of treat-to-target strategies and availability of biologic therapies, the outcomes for patients with RA have significantly improved. However, the unmet need in the treatment of RA remains high as some patients do not respond sufficiently to the currently available agents, remission is not always achieved and refractory disease is not uncommon. With better understanding of the pathophysiology of RA, new therapeutic approaches are emerging. Apart from more selective Janus kinase inhibition, there is a great interest in the granulocyte macrophage-colony stimulating factor pathway, Bruton's tyrosine kinase pathway, phosphoinositide-3-kinase pathway, neural stimulation and dendritic cell-based therapeutics. In this review, we will discuss the therapeutic potential of these novel approaches

    MTSS1 and SCAMP1 cooperate to prevent invasion in breast cancer

    Get PDF
    Cell–cell adhesions constitute the structural “glue” that retains cells together and contributes to tissue organisation and physiological function. The integrity of these structures is regulated by extracellular and intracellular signals and pathways that act on the functional units of cell adhesion such as the cell adhesion molecules/adhesion receptors, the extracellular matrix (ECM) proteins and the cytoplasmic plaque/peripheral membrane proteins. In advanced cancer, these regulatory pathways are dysregulated and lead to cell–cell adhesion disassembly, increased invasion and metastasis. The Metastasis suppressor protein 1 (MTSS1) plays a key role in the maintenance of cell–cell adhesions and its loss correlates with tumour progression in a variety of cancers. However, the mechanisms that regulate its function are not well-known. Using a system biology approach, we unravelled potential interacting partners of MTSS1. We found that the secretory carrier-associated membrane protein 1 (SCAMP1), a molecule involved in post-Golgi recycling pathways and in endosome cell membrane recycling, enhances Mtss1 anti-invasive function in HER2+/ER−/PR− breast cancer, by promoting its protein trafficking leading to elevated levels of RAC1-GTP and increased cell–cell adhesions. This was clinically tested in HER2 breast cancer tissue and shown that loss of MTSS1 and SCAMP1 correlates with reduced disease-specific survival. In summary, we provide evidence of the cooperative roles of MTSS1 and SCAMP1 in preventing HER2+/ER−/PR− breast cancer invasion and we show that the loss of Mtss1 and Scamp1 results in a more aggressive cancer cell phenotype

    The Evolution of Compact Binary Star Systems

    Get PDF
    We review the formation and evolution of compact binary stars consisting of white dwarfs (WDs), neutron stars (NSs), and black holes (BHs). Binary NSs and BHs are thought to be the primary astrophysical sources of gravitational waves (GWs) within the frequency band of ground-based detectors, while compact binaries of WDs are important sources of GWs at lower frequencies to be covered by space interferometers (LISA). Major uncertainties in the current understanding of properties of NSs and BHs most relevant to the GW studies are discussed, including the treatment of the natal kicks which compact stellar remnants acquire during the core collapse of massive stars and the common envelope phase of binary evolution. We discuss the coalescence rates of binary NSs and BHs and prospects for their detections, the formation and evolution of binary WDs and their observational manifestations. Special attention is given to AM CVn-stars -- compact binaries in which the Roche lobe is filled by another WD or a low-mass partially degenerate helium-star, as these stars are thought to be the best LISA verification binary GW sources.Comment: 105 pages, 18 figure

    The Caenorhabditis elegans Eph Receptor Activates NCK and N-WASP, and Inhibits Ena/VASP to Regulate Growth Cone Dynamics during Axon Guidance

    Get PDF
    The Eph receptor tyrosine kinases (RTKs) are regulators of cell migration and axon guidance. However, our understanding of the molecular mechanisms by which Eph RTKs regulate these processes is still incomplete. To understand how Eph receptors regulate axon guidance in Caenorhabditis elegans, we screened for suppressors of axon guidance defects caused by a hyperactive VAB-1/Eph RTK. We identified NCK-1 and WSP-1/N-WASP as downstream effectors of VAB-1. Furthermore, VAB-1, NCK-1, and WSP-1 can form a complex in vitro. We also report that NCK-1 can physically bind UNC-34/Enabled (Ena), and suggest that VAB-1 inhibits the NCK-1/UNC-34 complex and negatively regulates UNC-34. Our results provide a model of the molecular events that allow the VAB-1 RTK to regulate actin dynamics for axon guidance. We suggest that VAB-1/Eph RTK can stop axonal outgrowth by inhibiting filopodia formation at the growth cone by activating Arp2/3 through a VAB-1/NCK-1/WSP-1 complex and by inhibiting UNC-34/Ena activity
    corecore