223 research outputs found

    Protein quality control:from mechanism to disease EMBO Workshop, Costa de la Calma (Mallorca), Spain, April 28-May 03, 2019

    Get PDF
    The cellular protein quality control machinery with its central constituents of chaperones and proteases is vital to maintain protein homeostasis under physiological conditions and to protect against acute stress conditions. Imbalances in protein homeostasis also are keys to a plethora of genetic and acquired, often age-related, diseases as well as aging in general. At the EMBO Workshop, speakers covered all major aspects of cellular protein quality control, from basic mechanisms at the molecular, cellular, and organismal level to medical translation. In this report, the highlights of the meeting will be summarized

    The N-end rule pathway is a sensor of heme

    Get PDF
    The conjugation of arginine, by arginyl-transferase, to N-terminal aspartate, glutamate or oxidized cysteine is a part of the N-end rule pathway of protein degradation. We report that arginyl-transferase of either the mouse or the yeast Saccharomyces cerevisiae is inhibited by hemin (Fe3+-heme). Furthermore, we show that hemin inhibits arginyl-transferase through a redox mechanism that involves the formation of disulfide between the enzyme's Cys-71 and Cys-72 residues. Remarkably, hemin also induces the proteasome-dependent degradation of arginyl-transferase in vivo, thus acting as both a "stoichiometric" and "catalytic" down-regulator of the N-end rule pathway. In addition, hemin was found to interact with the yeast and mouse E3 ubiquitin ligases of the N-end rule pathway. One of substrate-binding sites of the yeast N-end rule's ubiquitin ligase UBR1 targets CUP9, a transcriptional repressor. This site of UBR1 is autoinhibited but can be allosterically activated by peptides that bear destabilizing N-terminal residues and interact with two other substrate-binding sites of UBR1. We show that hemin does not directly occlude the substrate-binding sites of UBR1 but blocks the activation of its CUP9-binding site by dipeptides. The N-end rule pathway, a known sensor of short peptides, nitric oxide, and oxygen, is now a sensor of heme as well. One function of the N-end rule pathway may be to coordinate the activities of small effectors, both reacting to and controlling the redox dynamics of heme, oxygen, nitric oxide, thiols, and other compounds, in part through conditional degradation of specific transcription factors and G protein regulators

    Performance of influenza-specific triage tools in an H1N1-positive cohort: P/F ratio better predicts the need for mechanical ventilation and critical care admission

    Get PDF
    Background Pandemic influenza presents a major threat to global health and socioeconomic well-being. Future demand for critical care may outstrip supply and force clinicians to triage patients for admission. We evaluated the Simple Triage Scoring System (STSS), Ontario Health Plan for an Influenza Epidemic (OHPIP) and PaO2/FIO2 (P/F) ratio to determine utility in predicting need for mechanical ventilation. Methods We conducted a retrospective case note review of patients admitted to two centres, Royal Liverpool University Hospital and Countess of Chester Hospital, during the UK influenza pandemic of 2010–11. Demand for critical care during this period forced hospitals in Cheshire and Merseyside to implement escalation policies and increase capacity. Inclusion criteria were polymerase chain reaction–confirmed H1N1 influenza and age >18 years. Exclusion criteria were no evidence of treatment for influenza, patient not admitted to hospital or the inability to locate case notes. Results One hundred and one patients were included, 29 were admitted to critical care and 23 required mechanical ventilation. The P/F ratio predicted the need for mechanical ventilation with a receiver operating characteristic area under the curve (ROC AUC) of 0.885 (CI 0.817–0.952). Predictive ability was not reduced when the P/F ratio had to be estimated using the Pandharipande tool. The STSS score predicted the need for mechanical ventilation [ROC AUC 0.798 (CI 0.704–0.891)]. The reverse triage component of the OHPIP tool was a poor predictor of patient outcome. Conclusions The P/F ratio was a better predictor of need for mechanical ventilation than STSS. The P/F ratio is a simple and accepted determinant of hypoxaemia and should be used if secondary triaging becomes necessary during future influenza pandemics

    The Rqc2/Tae2 subunit of the ribosome-associated quality control (RQC) complex marks ribosome-stalled nascent polypeptide chains for aggregation

    Get PDF
    Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Ribosome stalling during translation can potentially be harmful, and is surveyed by a conserved quality control pathway that targets the associated mRNA and nascent polypeptide chain (NC). In this pathway, the ribosome-associated quality control (RQC) complex promotes the ubiquitylation and degradation of NCs remaining stalled in the 60S subunit. NC stalling is recognized by the Rqc2/Tae2 RQC subunit, which also stabilizes binding of the E3 ligase, Listerin/Ltn1. Additionally, Rqc2 modifies stalled NCs with a carboxy-terminal, Ala- and Thr-containing extension-the 'CAT tail'. However, the function of CAT tails and fate of CAT tail-modified ('CATylated') NCs has remained unknown. Here we show that CATylation mediates formation of detergent-insoluble NC aggregates. CATylation and aggregation of NCs could be observed either by inactivating Ltn1 or by analyzing NCs with limited ubiquitylation potential, suggesting that inefficient targeting by Ltn1 favors the Rqc2-mediated reaction. These findings uncover a translational stalling-dependent protein aggregation mechanism, and provide evidence that proteins can become specifically marked for aggregation.Ribosome stalling during translation can potentially be harmful, and is surveyed by a conserved quality control pathway that targets the associated mRNA and nascent polypeptide chain (NC). In this pathway, the ribosome-associated quality control (RQC) com5116CNQP - CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICOConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)202144/2011-9We thank J Warner, A van Hoof, R Kopito, O Brandman, and S Lindquist for reagents. EBT gratefully acknowledges the Brazilian Council for Scientific and Technological Development (CNPq) for a Postdoctoral Fellowship. MK was supported by the Hartmut Hoffma

    Mouse Dfa Is a Repressor of TATA-box Promoters and Interacts with the Abt1 Activator of Basal Transcription

    Get PDF
    Our study of the mouse Ate1 arginyltransferase, a component of the N-end rule pathway, has shown that Ate1 pre-mRNA is produced from a bidirectional promoter that also expresses, in the opposite direction, a previously uncharacterized gene (Hu, R. G., Brower, C. S., Wang, H., Davydov, I. V., Sheng, J., Zhou, J., Kwon, Y. T., and Varshavsky, A. (2006) J. Biol. Chem. 281, 32559–32573). In this work, we began analyzing this gene, termed Dfa (divergent from Ate1). Mouse Dfa was found to be transcribed from both the bidirectional P_(Ate1/Dfa) promoter and other nearby promoters. The resulting transcripts are alternatively spliced, yielding a complex set of Dfa mRNAs that are present largely, although not exclusively, in the testis. A specific Dfa mRNA encodes, via its 3′-terminal exon, a 217-residue protein termed Dfa^A. Other Dfa mRNAs also contain this exon. DfaA is sequelogous (similar in sequence) to a region of the human/mouse HTEX4 protein, whose physiological function is unknown. We produced an affinity-purified antibody to recombinant mouse DfaA that detected a 35-kDa protein in the mouse testis and in several cell lines. Experiments in which RNA interference was used to down-regulate Dfa indicated that the 35-kDa protein was indeed Dfa^A. Furthermore, Dfa^A was present in the interchromatin granule clusters and was also found to bind to the Ggnbp1 gametogenetin-binding protein-1 and to the Abt1 activator of basal transcription that interacts with the TATA-binding protein. Given these results, RNA interference was used to probe the influence of Dfa levels in luciferase reporter assays. We found that Dfa^A acts as a repressor of TATA-box transcriptional promoters

    Heat Resistance Mediated by a New Plasmid Encoded Clp ATPase, ClpK, as a Possible Novel Mechanism for Nosocomial Persistence of Klebsiella pneumoniae

    Get PDF
    Klebsiella pneumoniae is an important opportunistic pathogen and a frequent cause of nosocomial infections. We have characterized a K. pneumoniae strain responsible for a series of critical infections in an intensive care unit over a two-year period. The strain was found to be remarkably thermotolerant providing a conceivable explanation of its persistence in the hospital environment. This marked phenotype is mediated by a novel type of Clp ATPase, designated ClpK. The clpK gene is encoded by a conjugative plasmid and we find that the clpK gene alone renders an otherwise sensitive E. coli strain resistant to lethal heat shock. Furthermore, one third of a collection of nosocomial K. pneumoniae isolates carry clpK and exhibit a heat resistant phenotype. The discovery of ClpK as a plasmid encoded factor and its profound impact on thermal stress survival sheds new light on the biological relevance of Clp ATPases in acquired environmental fitness and highlights the challenges of mobile genetic elements in fighting nosocomial infections

    Late Stage Infection in Sleeping Sickness

    Get PDF
    At the turn of the 19th century, trypanosomes were identified as the causative agent of sleeping sickness and their presence within the cerebrospinal fluid of late stage sleeping sickness patients was described. However, no definitive proof of how the parasites reach the brain has been presented so far. Analyzing electron micrographs prepared from rodent brains more than 20 days after infection, we present here conclusive evidence that the parasites first enter the brain via the choroid plexus from where they penetrate the epithelial cell layer to reach the ventricular system. Adversely, no trypanosomes were observed within the parenchyma outside blood vessels. We also show that brain infection depends on the formation of long slender trypanosomes and that the cerebrospinal fluid as well as the stroma of the choroid plexus is a hostile environment for the survival of trypanosomes, which enter the pial space including the Virchow-Robin space via the subarachnoid space to escape degradation. Our data suggest that trypanosomes do not intend to colonize the brain but reside near or within the glia limitans, from where they can re-populate blood vessels and disrupt the sleep wake cycles

    Uncovering Genes with Divergent mRNA-Protein Dynamics in Streptomyces coelicolor

    Get PDF
    Many biological processes are intrinsically dynamic, incurring profound changes at both molecular and physiological levels. Systems analyses of such processes incorporating large-scale transcriptome or proteome profiling can be quite revealing. Although consistency between mRNA and proteins is often implicitly assumed in many studies, examples of divergent trends are frequently observed. Here, we present a comparative transcriptome and proteome analysis of growth and stationary phase adaptation in Streptomyces coelicolor, taking the time-dynamics of process into consideration. These processes are of immense interest in microbiology as they pertain to the physiological transformations eliciting biosynthesis of many naturally occurring therapeutic agents. A shotgun proteomics approach based on mass spectrometric analysis of isobaric stable isotope labeled peptides (iTRAQ™) enabled identification and rapid quantification of approximately 14% of the theoretical proteome of S. coelicolor. Independent principal component analyses of this and DNA microarray-derived transcriptome data revealed that the prominent patterns in both protein and mRNA domains are surprisingly well correlated. Despite this overall correlation, by employing a systematic concordance analysis, we estimated that over 30% of the analyzed genes likely exhibited significantly divergent patterns, of which nearly one-third displayed even opposing trends. Integrating this data with biological information, we discovered that certain groups of functionally related genes exhibit mRNA-protein discordance in a similar fashion. Our observations suggest that differences between mRNA and protein synthesis/degradation mechanisms are prominent in microbes while reaffirming the plausibility of such mechanisms acting in a concerted fashion at a protein complex or sub-pathway level

    Late steps of ribosome assembly in E. coli are sensitive to a severe heat stress but are assisted by the HSP70 chaperone machine†

    Get PDF
    The late stages of 30S and 50S ribosomal subunits biogenesis have been studied in a wild-type (wt) strain of Escherichia coli (MC4100) subjected to a severe heat stress (45–46°C). The 32S and 45S ribosomal particles (precursors to 50S subunits) and 21S ribosomal particles (precursors to 30S subunits) accumulate under these conditions. They are authentic precursors, not degraded or dead-end particles. The 21S particles are shown, by way of a modified 3′5′ RACE procedure, to contain 16S rRNA unprocessed, or processed at its 5′ end, and not at the 3′ end. This implies that maturation of 16S rRNA is ordered and starts at its 5′-terminus, and that the 3′-terminus is trimmed at a later step. This observation is not limited to heat stress conditions, but it also can be verified in bacteria growing at a normal temperature (30°C), supporting the idea that this is the general pathway. Assembly defects at very high temperature are partially compensated by plasmid-driven overexpression of the DnaK/DnaJ chaperones. The ribosome assembly pattern in wt bacteria under a severe heat stress is therefore reminiscent of that observed at lower temperatures in E. coli mutants lacking the chaperones DnaK or DnaJ
    corecore