22 research outputs found

    Computational and experimental analyses of retrotransposon-associated minisatellite DNAs in the soybean genome

    Get PDF
    BACKGROUND: Retrotransposons are mobile DNA elements that spread through genomes via the action of element-encoded reverse transcriptases. They are ubiquitous constituents of most eukaryotic genomes, especially those of higher plants. The pericentromeric regions of soybean (Glycine max) chromosomes contain \u3e3,200 intact copies of the Gmr9/GmOgre retrotransposon. Between the 3\u27 end of the coding region and the long terminal repeat, this retrotransposon family contains a polymorphic minisatellite region composed of five distinct, interleaved minisatellite families. To better understand the possible role and origin of retrotransposon-associated minisatellites, a computational project to map and physically characterize all members of these families in the G. max genome, irrespective of their association with Gmr9, was undertaken. METHODS: A computational pipeline was developed to map and analyze the organization and distribution of five Gmr9-associated minisatellites throughout the soybean genome. Polymerase chain reaction amplifications were used to experimentally assess the computational outputs. RESULTS: A total of 63,841 copies of Gmr9-associated minisatellites were recovered from the assembled G. max genome. Ninety percent were associated with Gmr9, an additional 9% with other annotated retrotransposons, and 1% with uncharacterized repetitive DNAs. Monomers were tandemly interleaved and repeated up to 149 times per locus. CONCLUSIONS: The computational pipeline enabled a fast, accurate, and detailed characterization of known minisatellites in a large, downloaded DNA database, and PCR amplification supported the general organization of these arrays

    Genetic Architecture of Gene Expression Traits Across Diverse Populations

    Get PDF
    For many complex traits, gene regulation is likely to play a crucial mechanistic role. How the genetic architectures of complex traits vary between populations and subsequent effects on genetic prediction are not well understood, in part due to the historical paucity of GWAS in populations of non-European ancestry. We used data from the MESA (Multi-Ethnic Study of Atherosclerosis) cohort to characterize the genetic architecture of gene expression within and between diverse populations. Genotype and monocyte gene expression were available in individuals with African American (AFA, n = 233), Hispanic (HIS, n = 352), and European (CAU, n = 578) ancestry. We performed expression quantitative trait loci (eQTL) mapping in each population and show genetic correlation of gene expression depends on shared ancestry proportions. Using elastic net modeling with cross validation to optimize genotypic predictors of gene expression in each population, we show the genetic architecture of gene expression for most predictable genes is sparse. We found the best predicted gene in each population, TACSTD2 in AFA and CHURC1 in CAU and HIS, had similar prediction performance across populations with R2 \u3e 0.8 in each population. However, we identified a subset of genes that are well-predicted in one population, but poorly predicted in another. We show these differences in predictive performance are due to allele frequency differences between populations. Using genotype weights trained in MESA to predict gene expression in independent populations showed that a training set with ancestry similar to the test set is better at predicting gene expression in test populations, demonstrating an urgent need for diverse population sampling in genomics. Our predictive models and performance statistics in diverse cohorts are made publicly available for use in transcriptome mapping methods at https://github.com/WheelerLab/DivPop

    Multiethnic Meta-Analysis Identifies Ancestry-Specific and Cross-Ancestry Loci for Pulmonary Function

    Get PDF
    Nearly 100 loci have been identified for pulmonary function, almost exclusively in studies of European ancestry populations. We extend previous research by meta-analyzing genome-wide association studies of 1000 Genomes imputed variants in relation to pulmonary function in a multiethnic population of 90,715 individuals of European (N = 60,552), African (N = 8429), Asian (N = 9959), and Hispanic/Latino (N = 11,775) ethnicities. We identify over 50 additional loci at genome-wide significance in ancestry-specific or multiethnic meta-analyses. Using recent fine-mapping methods incorporating functional annotation, gene expression, and differences in linkage disequilibrium between ethnicities, we further shed light on potential causal variants and genes at known and newly identified loci. Several of the novel genes encode proteins with predicted or established drug targets, including KCNK2 and CDK12. Our study highlights the utility of multiethnic and integrative genomics approaches to extend existing knowledge of the genetics of lung function and clinical relevance of implicated loci

    Multiethnic meta-analysis identifies ancestry-specific and cross-ancestry loci for pulmonary function

    Get PDF
    Nearly 100 loci have been identified for pulmonary function, almost exclusively in studies of European ancestry populations. We extend previous research by meta-analyzing genome-wide association studies of 1000 Genomes imputed variants in relation to pulmonary function in a multiethnic population of 90,715 individuals of European (N = 60,552), African (N = 8429), Asian (N = 9959), and Hispanic/Latino (N = 11,775) ethnicities. We identify over 50 additional loci at genome-wide significance in ancestry-specific or multiethnic meta-analyses. Using recent fine-mapping methods incorporating functional annotation, gene expression, and differences in linkage disequilibrium between ethnicities, we further shed light on potential causal variants and genes at known and newly identified loci. Several of the novel genes encode proteins with predicted or established drug targets, including KCNK2 and CDK12. Our study highlights the utility of multiethnic and integrative genomics approaches to extend existing knowledge of the genetics of l

    Multiethnic meta-analysis identifies ancestry-specific and cross-ancestry loci for pulmonary function

    Get PDF
    Nearly 100 loci have been identified for pulmonary function, almost exclusively in studies of European ancestry populations. We extend previous research by meta-analyzing genome-wide association studies of 1000 Genomes imputed variants in relation to pulmonary function in a multiethnic population of 90,715 individuals of European (N = 60,552), African (N = 8429), Asian (N = 9959), and Hispanic/Latino (N = 11,775) ethnicities. We identify over 50 additional loci at genome-wide significance in ancestry-specific or multiethnic meta-analyses. Using recent fine-mapping methods incorporating functional annotation, gene expression, and differences in linkage disequilibrium between ethnicities, we further shed light on potential causal variants and genes at known and newly identified loci. Several of the novel genes encode proteins with predicted or established drug targets, including KCNK2 and CDK12. Our study highlights the utility of multiethnic and integrative genomics approaches to extend existing knowledge of the genetics of lung function and clinical relevance of implicated loci

    Gene-based association study for lipid traits in diverse cohorts implicates BACE1 and SIDT2 regulation in triglyceride levels

    Get PDF
    Plasma lipid levels are risk factors for cardiovascular disease, a leading cause of death worldwide. While many studies have been conducted on lipid genetics, they mainly focus on Europeans and thus their transferability to diverse populations is unclear. We performed SNP- and gene-level genome-wide association studies (GWAS) of four lipid traits in cohorts from Nigeria and the Philippines and compared them to the results of larger, predominantly European meta-analyses. Two previously implicated loci met genome-wide significance in our SNP-level GWAS in the Nigerian cohort, rs34065661 in CETP associated with HDL cholesterol (P = 9.0 × 10−10) and rs1065853 upstream of APOE associated with LDL cholesterol (P = 6.6 × 10−9). The top SNP in the Filipino cohort associated with triglyceride levels (rs662799; P = 2.7 × 10−16) and has been previously implicated in other East Asian studies. While this SNP is located directly upstream of well known APOA5, we show it may also be involved in the regulation of BACE1 and SIDT2. Our gene-based association analysis, PrediXcan, revealed decreased expression of BACE1 and decreased expression of SIDT2 in several tissues, all driven by rs662799, significantly associate with increased triglyceride levels in Filipinos (FDR <0.1). In addition, our PrediXcan analysis implicated gene regulation as the mechanism underlying the associations of many other previously discovered lipid loci. Our novel BACE1 and SIDT2 findings were confirmed using summary statistics from the Global Lipids Genetic Consortium (GLGC) meta-GWAS

    Supercoiling Effects on Short-Range DNA Looping in <i>E</i>. <i>coli</i>

    No full text
    <div><p>DNA-protein loops can be essential for gene regulation. The <i>Escherichia coli lactose</i> (<i>lac</i>) operon is controlled by DNA-protein loops that have been studied for decades. Here we adapt this model to test the hypothesis that negative superhelical strain facilitates the formation of short-range (6–8 DNA turns) repression loops in <i>E</i>. <i>coli</i>. The natural negative superhelicity of <i>E</i>. <i>coli</i> DNA is regulated by the interplay of gyrase and topoisomerase enzymes, adding or removing negative supercoils, respectively. Here, we measured quantitatively DNA looping in three different <i>E</i>. <i>coli</i> strains characterized by different levels of global supercoiling: wild type, gyrase mutant (<i>gyrB226</i>), and topoisomerase mutant (<i>ΔtopA10</i>). DNA looping in each strain was measured by assaying repression of the endogenous <i>lac</i> operon, and repression of ten reporter constructs with DNA loop sizes between 70–85 base pairs. Our data are most simply interpreted as supporting the hypothesis that negative supercoiling facilitates gene repression by small DNA-protein loops in living bacteria.</p></div
    corecore