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ARTICLE

Multiethnic meta-analysis identifies ancestry-
specific and cross-ancestry loci for pulmonary
function
Annah B. Wyss1 et al.#,

Nearly 100 loci have been identified for pulmonary function, almost exclusively in studies of

European ancestry populations. We extend previous research by meta-analyzing genome-

wide association studies of 1000 Genomes imputed variants in relation to pulmonary

function in a multiethnic population of 90,715 individuals of European (N= 60,552), African

(N= 8429), Asian (N= 9959), and Hispanic/Latino (N= 11,775) ethnicities. We identify

over 50 additional loci at genome-wide significance in ancestry-specific or multiethnic meta-

analyses. Using recent fine-mapping methods incorporating functional annotation, gene

expression, and differences in linkage disequilibrium between ethnicities, we further shed

light on potential causal variants and genes at known and newly identified loci. Several of the

novel genes encode proteins with predicted or established drug targets, including KCNK2 and

CDK12. Our study highlights the utility of multiethnic and integrative genomics approaches

to extend existing knowledge of the genetics of lung function and clinical relevance of

implicated loci.

DOI: 10.1038/s41467-018-05369-0 OPEN

Correspondence and requests for materials should be addressed to S.J.L. (email: london2@niehs.nih.gov). #A full list of authors and their affliations appears at
the end of the paper.
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Pulmonary function traits (PFTs), including forced expira-
tory volume in the first second (FEV1) and forced vital
capacity (FVC), and their ratio FEV1/FVC, are important

clinical measures for assessing respiratory health, diagnosing
chronic obstructive pulmonary disease (COPD), and monitoring
the progression and severity of various other lung conditions.
Further, even when within the normal range, these parameters are
related to mortality, independently of standard risk factors1–3.

In addition to lifestyle and environmental factors, such as
smoking and air pollution, genetics influences pulmonary
function4–6. Previous genome-wide association studies (GWAS)
have identified nearly 100 loci associated with PFTs7–15. These
analyses have been primarily conducted using HapMap imputed
data among European ancestry populations7–12. Recently, the UK
BiLEVE Study (N= 48,943) and SpiroMeta Consortium (N=
38,199) have also examined associations between 1000 Genomes
imputed variants and PFTs, but only among Europeans13–15.

The present cohorts for heart and aging research in genomic
epidemiology (CHARGE) meta-analysis builds upon previous
studies by examining PFTs in relation to the more comprehensive
1000 Genomes panel in a larger study population (90,715 indi-
viduals from 22 studies, Table 1) comprised of multiple ancestral
populations: European (60,552 individuals from 18 studies),
African (8429 individuals from 7 studies), Asian (9959 indivi-
duals from 2 studies), and Hispanic/Latino (11,775 individuals
from 6 ethnic background groups in 1 study). Along with look-up
of our top findings in existing analyses of lung function traits and
COPD, we additionally investigate correlation with gene expres-
sion in datasets from blood and lung tissue, identify known or
potential drug targets for newly identified lung function asso-
ciated loci, and assess the potential biological importance of our
findings using recently developed methods integrating linkage
disequilibrium (LD), functional annotation, gene expression, and
the multiethnic nature of our data. By conducting a GWAS meta-
analysis in a large multiethnic population and employing recently
developed integrative genomic methods, we identify over 50
additional loci associated with pulmonary function, including
some with functional or clinical relevance.

Results
Ancestry-specific meta-analyses. Each study used linear regres-
sion to model the additive effect of variants on PFTs, adjusting for
age, sex, height, cigarette smoking, weight (for FVC only), and
center, ancestral principal components, and a random familial
effect to account for family relatedness when appropriate.
Ancestry-specific fixed-effects inverse-variance weighted meta-
analyses of study-specific results, with genomic control correc-
tion, were conducted in METAL (http://www.sph.umich.edu/csg/
abecasis/metal/). Meta-analyses included approximately 11.1
million variants for European ancestry, 18.1 million for African
ancestry, 4.2 million variants for Asian ancestry, and 13.8 million
for Hispanic/Latino ethnicity (see Methods).

European ancestry meta-analyses identified 17 novel loci
(defined as more than 500 kb in either direction from the
top variant of a known locus as has been used in previous
multiethnic GWAS16), which were significantly (defined as P <
5.0 × 10−8 14,17) associated with pulmonary function: two loci for
FEV1 only, 6 loci for FVC only, 7 loci for FEV1/FVC only, and
two loci for both FEV1 and FVC (Table 2, Fig. 1, Supplementary
Figures 1 and 2). The African ancestry meta-analysis identified
eight novel loci significantly associated with pulmonary function:
two loci for FEV1, one locus for FVC, and five loci for FEV1/FVC
(Table 3, Supplementary Figures 1–3). Five of these loci were also
significant at a stricter P < 2.5 × 10−8 threshold as has been
suggested for populations of African ancestry17. Six of the African

ancestry loci were identified based on variants with low allele
frequencies (0.01–0.02) in African ancestry and which were
monomorphic or nearly monomorphic (allele frequency < 0.004)
in other ancestries (European, Asian, and Hispanic; Supplemen-
tary Table 1). In the Hispanic/Latino ethnicity meta-analysis, we
identified one novel locus for FVC (Table 3, Supplementary
Figures 1–3). Another locus was significantly associated with
FEV1, but this region was recently reported by the Hispanic
Community Health Study/Study of Latinos (HCHS/SOL)18. For
FEV1/FVC among Hispanics/Latinos, all significant variants were
in loci identified in previous studies of European ancestry
populations. In the Asian ancestry meta-analysis, all variants
significantly associated with PFTs were also in loci previously
identified among European ancestry populations (Supplementary
Figure 3). Within each ancestry, variants discovered for one PFT
were also looked-up for associations with the other two PFTs
(Supplementary Table 2).

Multiethnic meta-analysis. In multiethnic fixed-effects meta-
analyses of 10.9 million variants, we identified 47 novel loci sig-
nificantly associated with pulmonary function. Thirteen of these

Table 1 Sample size and location of studies included in the
CHARGE consortium 1000 Genomes and pulmonary
function meta-analysis

Studya Country Sample size by ancestry

European African Hispanic/
Latino

Asian

AGESb Iceland 1620
ALHS United States 2844
ARICb United States 8878 1837
CARDIAb United States 1580 883
CHSb United States 3135 566
FamHS United States 1679
FHSb United States 7689
GOYA Denmark 1456
HCHS/
SOL

United States 11775

HCSb Australia 1822
Health
ABCb

United States 1472 943

Healthy
Twin

South Korea 2098

JHS United States 2015
KARE3 South Korea 7861
LifeLinesb Netherlands 11851
LLFSb United States

and Denmark
3787

MESAb United States 1339 863
NEO Netherlands 5460
1982
Pelotas

Brazil 1357 1322

RSIb Netherlands 1232
RSIIb Netherlands 1135
RSIIIb Netherlands 2216

Total 60,552 8429 11,775 9959

aAGES Age Gene Environment Susceptibility Study; ALHS Agricultural Lung Health Study (1180
asthma cases and 1664 controls); ARIC Atherosclerosis Risk in Communities Study; CARDIA
coronary artery risk development in young adults; CHS Cardiovascular Health Study; FamHS
Family Heart Study; FHS Framingham Heart Study; GOYA Genetics of Overweight Young Adults
Study (670 obese cases and 786 controls); HCHS/SOL Hispanic Community Health Study/
Study of Latinos; HCS Hunter Community Study; JHS Jackson Heart Study; KARE3 Korean
Association Resource Phase 3 Study; LLFS Long Life Family Study; MESA Multi-Ethnic Study of
Atherosclerosis; NEO Netherlands Epidemiology of Obesity Study; RS Rotterdam Study
bStudies included in one or more previous CHARGE papers: Hancock et al. (2010) included
ARIC, CHS, FHS, RSI, and RSII; Soler Artigas et al. (2011) included AGES, ARIC, CHS, FHS, Health
ABC, RSI, and RSII in stage 1 and HCS, CARDIA, LifeLines, MESA, and RSIII in stage 2; and Loth
et al. (2014) included AGES, ARIC, CARDIA, CHS, FHS, Health ABC, HCS, MESA, RSI, RSII, and
RSIII in stage 1 and LifeLines and LLFS in stage 2
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loci were also identified in the ancestry-specific meta-analyses,
while 34 were uniquely identified in the multiethnic meta-ana-
lysis: 11 loci for FEV1 only, 14 loci for FVC only, 7 loci for FEV1/
FVC only, 1 locus for FEV1 and FEV1/FVC, and 1 locus for all
three phenotypes (Tables 4–6, Fig. 1, Supplementary Figures 1–2).
Although many of the 34 loci uniquely identified in the multi-
ethnic meta-analysis were just shy of significance in the European
ancestry meta-analysis, and therefore benefited from the addi-
tional sample size of the multiethnic meta-analysis, some multi-
ethnic loci contained variants near genome-wide significance in at
least one other ancestry-specific meta-analysis with some nominal
significance (P < 0.05) in the remaining ancestry-specific meta-
analyses (Supplementary Table 3). For example, rs7899503 in
JMJD1C was significantly associated with FEV1 in the multiethnic
meta-analysis (β= 21.16 ml, P= 8.70 × 10−14) and had the fol-
lowing ancestry-specific results: Asian β= 28.29 ml, P= 4.56 ×
10−7; European β= 17.35 ml, P= 1.35 × 10−5; Hispanic β=
19.86 ml, P= 0.002; African β= 29.14 ml, P= 0.03; I2= 0 and
Pheterogeneity= 0.40 across the four ancestry-specific results.

In addition to the fixed-effects multiethnic meta-analysis, we
conducted a random-effects meta-analysis using the Han and
Eskin method19 in METASOFT (http://genetics.cs.ucla.edu/meta/)
as a sensitivity analysis. In instances where significant hetero-
geneity is present, the Han-Eskin method mitigates power loss19.
In the Han-Eskin random-effects model, 37 of the 47 loci
identified in the fixed-effects model at P < 5 × 10−8 had a P value
below the same threshold (Supplementary Table 4). Among the
ten loci that did not, eight loci still gave a P < 5 × 10−7 in the
Han-Eskin random-effects model (PIK3C2B, SUZ12P1, NCOR2/
SCARB1, CTAGE1/RBBP8, C20orf112, COMTD1/ZNF503-AS1,
EDAR, and RBMS3) while only two did not (CRADD and
CCDC41) (Supplementary Table 4). In addition, there were six
loci for FEV1/FVC that were genome-wide significant in the Han-
Eskin random-effects model that had not quite achieved genome-
wide significance in the fixed-effects model: GSTO1/GSTO2
(chr10, rs10883990), FRMD4A (chr10, rs1418884), ETFA/SCA-
PER (chr15, rs12440815), APP (chr21, rs2830155), A4GNT (chr3,
rs9864090), UBASH3B (chr11, rs4935813) (Supplementary
Table 4).

X-chromosome meta-analysis. Imputed data for X-chromosome
variants were available in 12 studies (ARIC, FHS, CHS, MESA,
AGES, ALHS, NEO, RS1, RS2, RS3, JHS, Pelotas; N= 43,153).
Among these studies, fixed-effects inverse-variance weighted
meta-analyses were conducted separately in males and females
using METAL and the resulting sex-specific results were com-
bined using a weighted sums approach. No X-chromosome var-
iants were associated with PFTs at genome-wide significance in
ancestry-specific or multiethnic meta-analyses. Although the
absence of associations between X-chromosome variants and
PFTs could reflect the reduced sample size, previous GWAS of
pulmonary function have only identified one variant13.

Look-up replication of European and multiethnic novel loci.
Our primary look-up replication was conducted in the UK
BiLEVE study (N= 48,943)14. Since this study only included
individuals of European ancestry, we sought replication only for
the 52 novel loci (excluding the major histocompatibility com-
plex, MHC) identified in either the European ancestry or multi-
ethnic discovery meta-analyses. Data for the lead variant was
available in the UK BiLEVE study for 51 loci, including 49 loci
with a consistent direction of effect between our results and those
from UK BiLEVE (Supplementary Table 5). Based on a two-sided
P < 9.6 × 10−4 (0.05/52), 15 loci replicated for the same trait based
on the lead variant from our analysis: DCBLD2/MIR548G,T
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b FVC European ancestry; c FEV1 /FVC European ancestry; d FEV multiethnic; e FVC multiethnic; f FEV1 /FVC multiethnic. Novel loci indicated by magenta.
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SUZ12P1, CRHR1, WNT3, ZNF337, ALX1/RASSF9, MED1/
CDK12, EYA2, RBMS3, LINC00340, FLJ35282/ELAVL2, DDHD1/
MIR5580, TSHZ3, KLHL22/MED15, FAM168A (Supplementary
Table 5). It was recently demonstrated that using one-sided
replication P values in GWAS, guided by the direction of asso-
ciation in the discovery study, increases replication power while
being protective against type 1 error compared to the two-sided P
values20; under this criterion, an additional four loci replicated for
the same trait based on the lead variant: RAB5B, JMJD1C, AGMO,
and C20orf112 (Supplementary Table 5).

We also conducted a secondary look-up replication for
European ancestry and multiethnic lead variants in the much
larger UK Biobank study (N= 255,492 with PFTs) from which
the UK BiLEVE study is sampled. Unlike the UK BiLEVE results
which were adjusted for age, age2, sex, height, pack-years of
smoking, and ancestral principal components14, the publicly
available UK BioBank results (https://sites.google.com/
broadinstitute.org/ukbbgwasresults/home) are only adjusted for
sex and ancestral principal components. In addition, only results
for FEV1 and FVC (not the ratio FEV1/FVC) were currently
available. Nevertheless, this secondary look-up yielded evidence
of replication for the same trait for an additional 9 loci with a
two-sided P < 9.6 × 10−4: NR5A2, PIK3C2B, OTUD4/SMAD1,
AP3B1, CENPW/RSPO3, SMAD3, PDXDC2P, SOGA2, DCC
(Supplementary Table 5). Another locus also replicated for the
same trait with a one-sided P < 9.6 × 10−4 (DNAH12) and
another discovered for FEV1/FVC also replicated for FEV1 and
FVC (KCNJ3/NR4A2) in the UK Biobank data. In summary, we
found evidence of replication in UK BiLEVE or UK Biobank for
30 novel loci.

Look-up replication of African and Hispanic novel loci. Look-
up replication of lead variants for novel African ancestry loci was
sought in three smaller studies of African Americans: COPDGene
(N= 3219)21,22, SAPPHIRE (N= 1707)23,24, and SAGE (N=
1405; predominantly children)25. We did not find evidence of
replication for most of the African ancestry loci identified in our
study (Supplementary Table 6). This could possibly reflect low
power given the smaller sample sizes of the external studies
combined with the low minor allele frequencies (MAF) of most
(six out of eight) of the African ancestry variants. We found the
strongest evidence for replication for RYR2 (rs3766889). This
variant was common (MAF= 0.18) and well imputed (r2 > 0.90)
in CHARGE. The effect size was similar across CHARGE (β=
52.21 ml, P= 4.12 × 10−8) and the two adult replication studies
(COPDGene β= 46.85 ml, P= 0.03 and SAPPHIRE β=
22.00 ml, P= 0.32); meta-analysis of these adult studies resulted
in a significant combined association (β= 47.35 ml, SE= 8.00 ml,
P= 3.30 × 10−9). In SAGE, which includes mostly children and
examined percent predicted values, the result was in the opposite
direction and not significant. In our Hispanic ethnicity/Latino
meta-analysis, the lead variant from the single novel locus
(rs6746679, DKFZp686O1327/PABPC1P2) did not replicate in
two smaller external studies of Hispanics: MESA (N= 806; MESA
Hispanics not included in discovery) and GALA II (N= 2203;
predominantly children)26 (Supplementary Table 6).

Overlap of newly identified loci with COPD. Pulmonary func-
tion measures are the basis for the diagnosis of COPD, an
important clinical outcome; therefore, we also looked-up the 52
novel loci identified in the European ancestry or multiethnic
meta-analyses in the International COPD Genetics Consortium
(ICGC). This consortium recently published a meta-analysis of
1000 Genomes imputed variants and COPD primarily among
individuals of European ancestry (N= 15,256 cases and 47,936T
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controls), including some of the same individuals included in the
present lung function analysis27. Ten lead variants representing
eight novel loci were associated with COPD at P < 9.6 × 10−4:
RBMS3, OTUD4/SMAD1, TMEM38B/ZNF462, NCOR2/SCARB1,

SUZ12P1, WNT3, SOGA2, C20orf112 (Supplementary Table 7).
Directions of effects were consistent between our results and
the COPD findings for these variants (i.e., variants associated
with increased pulmonary function values were associated

Table 4 Top variants from novel loci discovered in multiethnic meta-analysis of FEV1
a in the CHARGE consortium

Nearest gene(s)b,c Top variant Chr:Pos Coded alleled Allele freq N Betae SE P value

PIK3C2B rs12092943 1:204434927 t 0.74 90703 −14.57 2.67 4.83E−08
C1orf140, DUSP10 1:221765779:C_CA 1:221765779 i 0.12 55548 −36.25 6.57 3.38E−08
PKDCC, EML4 rs963406 2:42355947 a 0.12 80755 −23.13 4.18 3.17E−08
DNAH12 rs79294353 3:57494433 a 0.92 79170 −29.56 5.05 4.82E−09
DCBLD2, MIR548G rs6778584 3:98815640 t 0.70 90393 12.98 2.37 4.51E−08
OTUD4, SMAD1 rs111898810 4:146174040 a 0.20 80752 −20.24 3.61 2.14E−08
DMRT2, SMARCA2 rs9407640 9:1574877 c 0.41 80754 −14.48 2.65 4.77E−08
JMJD1C rs7899503 10:65087468 c 0.25 90712 21.16 2.84 8.70E−14
RAB5B rs772920 12:56390364 c 0.72 90572 13.86 2.49 2.48E−08
NCOR2, SCARB1 rs11057793 12:125230287 t 0.75 78930 17.66 3.24 4.78E−08
SUZ12P1 rs62070631 17:29087285 a 0.15 82835 20.26 3.64 2.57E−08
LOC644172, CRHR1 rs186806998 17:43682323 t 0.82 43927 29.50 4.70 3.47E−10
WNT3 rs199525 17:44847834 t 0.80 80753 18.85 3.08 9.59E−10
SOGA2 rs513953 18:8801351 a 0.29 82871 −14.5 2.58 1.96E−08
CTAGE1, RBBP8 rs7243351 18:20148531 t 0.45 90708 12.31 2.25 4.69E−08
ZNF337 rs6138639 20:25669052 c 0.79 90593 17.91 2.85 3.17E−10
C20orf112 rs1737889 20:31042176 t 0.22 80755 −16.82 3.07 4.17E−08

aPhenotype: FEV1 forced expiratory volume in 1 s (in ml).
bNearest gene: indicates gene either harboring the variant or nearest to it. C1orf140/DUSP10 locus also includes HLX. JMJD1C locus also includes EGR2, NRBF2, JMJD1C-AS1, REEP3. RAB5B locus also
includes SOUX. SMAD3 locus also includes AAGAB, IQCH. MED1/CDK12 locus also includes FBXL20. LOC644172/CRHR1 locus also includes ARHGAP27, MGC57346, CRHR1-IT1, LRRC37A4P. ZNF337 locus
also includes ABHD12, PYGB, GINS1, NINL, NANP, FAM182B, LOC100134868.
cLoci also discovered in European ancestry meta-analyses (Table 2): C1orf140/DUSP10, DMRT2/SMARCA2, LOC644172/CRHR1, WNT3.
dAlleles for INDELS: I insertion, D deletion.
eAdditive effect of variant on pulmonary function, adjusting for age, age2, sex, height, height2, smoking status, pack-years of smoking, weight (for FVC only), and center, ancestral principal components,
and a random familial effect to account for family relatedness when appropriate

Table 5 Top variants from novel loci discovered in multiethnic meta-analysis of FVCa in the CHARGE consortium

Nearest gene(s)b,c Top variant Chr:Pos Coded alleled Allele freq N Betae SE P value

NR5A2 rs2821332 1:200085714 a 0.47 90,642 14.50 2.51 7.65E−09
C1orf140, DUSP10 rs12046746 1:221635207 c 0.71 90,427 −16.99 2.81 1.41E−09
RYR2 1:237929787:T_TCA 1:237929787 i 0.11 48,215 −37.17 6.79 4.46E−08
EDAR rs17034666 2:109571508 a 0.23 82,747 −27.93 4.96 1.81E−08
DCBLD2, MIR548G rs1404098 3:98806782 a 0.71 90,334 15.93 2.73 5.45E−09
AP3B1 rs72776440 5:77440196 c 0.21 90,631 −21.30 3.21 3.20E−11
CENPW, RSPO3 rs11759026 6:126792095 a 0.72 80,687 −20.20 3.44 4.35E−09
AGMO rs55905169 7:15506529 c 0.31 90,511 −17.57 3.09 1.28E−08
DMRT2, SMARCA2 rs9407640 9:1574877 c 0.42 80,686 −16.82 3.03 2.87E−08
COMTD1, ZNF503-
AS1

10:77002679:TC_T 10:77002679 d 0.22 55,498 22.36 4.10 4.89E−08

KIRREL3-AS3, ETS1 rs73025192 11:127995904 t 0.12 90,529 −24.18 4.28 1.63E−08
ALX1, RASSF9 rs7971039 12:85724305 a 0.26 90,639 16.36 2.88 1.44E−08
CRADD rs11107184 12:94184082 t 0.34 88,548 14.89 2.71 3.87E−08
CCDC41 rs10859698 12:94852628 a 0.21 88,159 21.19 3.84 3.49E−08
SQRDL, SEMA6D rs4775429 15:46722435 t 0.17 79,231 40.23 7.21 2.45E−08
SMAD3 rs8025774 15:67483276 t 0.29 88,524 −20.87 2.92 9.34E−13
PDXDC2P rs3973397 16:70040398 a 0.48 44,921 −22.38 4.05 3.31E−08
PMFBP1, ZFHX3 rs55771535 16:72252097 a 0.13 80,688 −29.88 4.83 6.38E−10
MED1, CDK12 rs8067511 17:37611352 t 0.80 90,632 18.30 3.20 1.08E−08
LOC644172, CRHR1 rs150741403 17:43682405 c 0.85 43,896 35.83 5.97 1.94E−09
WNT3 rs199525 17:44847834 t 0.80 80,686 20.32 3.52 7.52E−09
CABLES1 rs7238093 18:20728158 a 0.22 90,240 18.15 3.13 6.78E−09
DCC rs8089865 18:50957922 a 0.53 90,578 15.81 2.57 7.38E−10

aPhenotype: FVC forced vital capacity (in ml).
bNearest gene: indicates gene either harboring the variant or nearest to it. C1orf140/DUSP10 locus also includes HLX. SMAD3 locus also includes AAGAB, IQCH. MED1/CDK12 locus also includes FBXL20.
LOC644172/CRHR1 locus also includes ARHGAP27, MGC57346, CRHR1-IT1, LRRC37A4P.
cLoci also discovered in European ancestry meta-analyses (Table 2): C1orf140/DUSP10, AP3B1, DMRT2/SMARCA2, ALX1/RASSF9, LOC644172/CRHR1, WNT3, DCC. Loci also discovered in African ancestry
meta-analyses (Table 3): RYR2.
dAlleles for INDELS: I insertion, D deletion
eAdditive effect of variant on pulmonary function, adjusting for age, age2, sex, height, height2, smoking status, pack-years of smoking, weight (for FVC only), and center, ancestral principal components,
and a random familial effect to account for family relatedness when appropriate
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with decreased odds of COPD and vice-versa). Our top variant
in SOGA2 (also known as MTCL1) is in LD (R2= 0.8)
with the top variant for COPD as reported by the IGCG
Consortium27.

eQTL and mQTL signals. To query whether novel loci contained
variants associated with gene expression (eQTLs), we looked-up
variants from all 60 novel loci identified in any ancestry-specific
or multiethnic meta-analyses in the following datasets: (1) lung
samples from 278 individuals in genotype-tissue expression
(GTEx) (https://www.gtexportal.org/home/)28; (2) lung samples
from 1111 participants in studies from the Lung eQTL Con-
sortium including Laval University, the University of Groningen
and the University of British Columbia29–31; (3) whole blood
samples from 5257 Framingham Heart Study participants32; (4)
peripheral blood samples from 5311 participants in EGCUT,
InCHIANTI, Rotterdam Study, Fehrmann, HVH, SHIP-TREND
and DILGOM33; and (5) peripheral blood samples from 2116
participants in four Dutch studies collectively known as
BIOS34,35. We examined both whole blood and lung datasets to
take advantage of the much larger size, and higher statistical
power, of available blood eQTL datasets since we have previously
found substantial overlap between lung and blood eQTLs for lung
function GWAS loci, as well as complementary information from
these two different tissues29. The Lung eQTL Consortium study
used a 10% FDR cut-off, while all other studies used a 5% FDR
cutoff (see Supplementary Note 1 for further study descriptions
and methods).

A significant cis-eQTL in at least one dataset was found for 34
lead variants representing 27 novel loci (Supplementary Table 8).
Of these, 13 loci had significant cis-eQTLs only in datasets with
blood samples and three loci only in datasets with lung samples
(COMTD1/ZNF503-AS1, FAM168A, SOGA2). Eleven loci had
significant cis-eQTLs in both blood and lung samples based on
lead variants, with one locus having a significant cis-eQTL across
all five datasets (SMAD3) and another four loci having a
significant cis-eQTL in four datasets (RAB5B, CRHR1, WNT3,
ZNF337). Significant trans-eQTLs in at least one dataset were
found for seven lead variants representing four novel loci
(TMEM38B/ZNF462, RAB5B, CRHR1, and WNT3, Supplemen-
tary Table 8).

In addition, mQTL data were available from FHS and BIOS.
Significant cis-mQTLs and trans-mQTLs in at least one dataset
were found for 52 lead variants (43 novel loci) and 1 lead variant
(1 novel locus), respectively (Supplementary Table 8).

None of the novel variants discovered for African and Hispanic
ancestry indicated significant cis-eQTLs in GTex which includes
some slight multiethnic representation (12% African American
and 3% other races/ethnicities). Although few ancestry-specific
eQTL datasets exist, we identified two such studies with blood
samples from African American participants: SAPPHIRE (N=
597) and MESA (N= 233)36. In SAPPHIRE, none of the eight
African ancestry variants identified in the meta-analysis indicated
significant cis-eQTLs (FDR < 0.05), but rs180930492 was asso-
ciated with a trans-eQTL among individuals without asthma and
rs111793843 and rs139215025 were associated with trans-eQTLs
among individuals with asthma at FDR < 0.05 (Supplementary
Table 9). In MESA, eQTL data were available for only three of the
African ancestry variants (rs11748173, rs3766889, rs144296676),
and none indicated significant (FDR < 0.05) cis-eQTLs (Supple-
mentary Table 9).

Heritability and genetic correlation. We used LD score regres-
sion37 to estimate the variance explained by genetic variants
investigated in our European ancestry meta-analysis, also known
as single nucleotide polymorphisms (SNP) heritability. Across the
genome, the SNP heritability (narrow-sense) was estimated to be
20.7% (SE 1.5%) for FEV1, 19.9% (SE 1.4%) for FVC, and 17.5%
(SE 1.4%) for FEV1/FVC.

We also partitioned heritability by functional categories to
investigate whether particular subsets of common variants were
enriched38. We found significant enrichment in six functional
categories for all three PFTs: conserved regions in mammals,
DNase I hypersensitive sites (DHS), superenhancers, the histone
methylation mark H3K4me1 and histone acetylation marks
H3K9Ac and H3K27Ac (Supplementary Figure 4). Another
seven categories showed enrichment for at least one PFT
(Supplementary Figure 5). We observed the largest enrichment
of heritability (14.5–15.3 fold) for conserved regions in mammals,
which has ranked highest in previous partitioned heritability
analyses for other GWAS traits (Supplementary Figure 5)38.

Since both height and smoking are important determinants of
pulmonary function, and have been associated with many

Table 6 Top variants from novel loci discovered in multiethnic meta-analysis of FEV1/FVCa in the CHARGE consortium

Nearest gene(s)b,c Top variant Chr:Pos Coded alleled Allele freq N Betae SE P value

DCAF8 rs11591179 1:160206067 t 0.45 90,624 −0.002 0.0003 3.48E−08
KCNJ3, NR4A2 rs72904209 2:157046432 t 0.88 90,453 0.003 0.0005 3.09E−08
RBMS3 rs28723417 3:29431565 a 0.74 90,358 0.002 0.0004 1.77E−08
DCBLD2, MIR548G rs80217917 3:99359368 t 0.88 90,617 −0.003 0.0005 2.58E−08
AFAP1 rs28520091 4:7846240 t 0.44 80,715 0.002 0.0004 8.40E−09
LINC00340 rs9350408 6:22021373 t 0.51 82,761 −0.003 0.0003 7.45E−14
FLJ35282, ELAVL2 rs10965947 9:23588583 t 0.39 90,475 0.002 0.0004 2.70E−09
TMEM38B, ZNF462 rs2451951 9:109496630 t 0.47 88,436 0.002 0.0003 2.36E−08
JMJD1C rs75159994 10:64916064 t 0.77 86,988 −0.003 0.0004 6.09E−09
HTRA1 rs2293871 10:124273671 t 0.23 90,481 0.002 0.0004 1.51E−08
FAM168A 11:73280955: GA_G 11:73280955 d 0.20 55,521 0.004 0.0006 2.74E−08
DDHD1, MIR5580 rs4444235 14:54410919 t 0.54 80,712 0.002 0.0004 4.03E−08
TSHZ3 rs9636166 19:31829613 a 0.86 80,714 0.003 0.0005 3.25E−09
KLHL22, MED15 rs4820216 22:20854161 t 0.13 82,714 −0.003 0.0005 2.61E−10

aPhenotype: ratio FEV1/FVC (as a proportion).
bNearest gene: indicates gene either harboring the variant or nearest to it. HTRA1 locus also includes DMBT1. JMJD1C locus also includes EGR2, NRBF2, JMJD1C-AS1, REEP3. KLHL22/MED15 locus also
includes ZNF74, SCARF2.
cLoci also discovered in European ancestry meta-analyses (Table 2): RBMS3, AFAP1, LINC00340, TSHZ3, KLHL22/MED15.
dAlleles for INDELS: I insertion, D deletion.
eAdditive effect of variant on pulmonary function, adjusting for age, age2, sex, height, height2, smoking status, pack-years of smoking, weight (for FVC only), and center, ancestral principal components,
and a random familial effect to account for family relatedness when appropriate
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common variants in previous GWAS, we also used LD score
regression to investigate genetic overlap39 between our FEV1,
FVC, and FEV1/FVC results and publicly available GWAS results
of ever smoking40 and height41. No significant genetic correlation
was found between PFTs and smoking or height (Supplementary
Table 10), indicating our findings are independent of those traits.

In addition, we used LD Score regression to investigate genetic
overlap between each PFT and the other two PFTs, as well as with
asthma. Based on the overall PFT results presented in this paper,
we found significant genetic correlation between FEV1 and FVC
(P < 0.001) and between FEV1 and FEV1/FVC (P < 0.001), but not
between FVC and FEV1/FVC (P= 0.23; Supplementary Table 10).
Since measures of FEV1 and FVC (independent of genetics) are
highly correlated, and to lesser degree FEV1/FVC10, these results
are not surprising. Using publicly available GWAS results for
asthma42, we also found significant correlation between PFTs and
asthma (P < 0.003; Supplementary Table 10).

Functional annotation. For functional annotation, we considered
all novel variants with P < 5 × 10−8 from the 60 loci discovered in
our ancestry-specific and multiethnic meta-analyses, plus sig-
nificant variants from the MHC region, two loci previously dis-
covered in the CHARGE exome chip study (LY86/RREB1 and
SEC24C)43 and DDX1. Using Ensembl variant effect predictor
(VEP)44, we found six missense variants in four loci outside of the
MHC region and 22 missense variants in the MHC region
(Supplementary Table 11). Of the 28 total missense variants, two
(chr15:67528374 in AAGAB and chr6:30899524 in the MHC
region) appear to be possibly damaging based on sorting intol-
erant from tolerant (SIFT)45 and Polymorphism Phenotyping v2
(PolyPhen-2)46 scores (Supplementary Table 11). Using com-
bined annotation dependent depletion (CADD)47, we found an
additional 28 deleterious variants from 15 loci based on having a
scaled C-score greater than 15 (Supplementary Data 1). In the
MHC region, we found another 11 deleterious variants based on
CADD. Based on RegulomeDB48, which annotates regulatory
elements especially for noncoding regions, there were 52 variants
from 18 loci with predicted regulatory functions (Supplementary
Data 1). In the MHC region, there were an additional 72 variants
with predicted regulatory functions.

Pathway enrichment analysis. Gene set enrichment analyses
conducted using data-driven expression prioritized integration
for complex traits (DEPICT)49 on genes annotated to variants
with P < 1 × 10−5 based on the European ancestry meta-analysis
results revealed 218 significantly enriched pathways (FDR < 0.05)
(Supplementary Data 2). The enriched pathways were dominated
by fundamental developmental processes, including many
involved in morphogenesis of the heart, vasculature, and lung.
Tissue and cell type analysis noted significant enrichment (FDR <
0.05) of smooth muscle, an important component of the lung
(Supplementary Table 12, Supplementary Figure 6). We found 8,
1, and 82 significantly prioritized genes (FDR < 0.05) for FEV1,
FVC, and FEV1/FVC, respectively (Supplementary Data 3). Given
the generally smaller p-values for variants associated with FEV1/
FVC, enriched pathways and tissue/cell types as well as prior-
itized genes were predominantly discovered from DEPICT ana-
lyses of FEV1/FVC.

Due to extended LD across the MHC locus on chromosome 6
(positions 25000000 to 35000000), DEPICT excludes this
region49. Standard Ingenuity Pathway Analysis (IPA) run without
excluding the MHC highlighted 16 enriched networks based on
the European ancestry meta-analysis results, including three
involved in inflammatory diseases or immunity; 33 of the 84
genes in these 3 networks are in the MHC region (Supplementary

Table 13). IPA based on the multiethnic results highlighted 21
enriched networks, including similar inflammatory and immunity
related networks (Supplementary Table 14).

Identification of potential causal variants using PAINTOR.
Using a multiethnic fine-mapping analysis incorporating strength
of association, variation in genetic background across major
ethnic groups, and functional annotations in Probabilistic
Annotation INtegraTOR (PAINTOR)50, we examined 38 loci that
contained at least five genome-wide significant variants in the
European ancestry and multiethnic meta-analyses or at least one
significant variant in the African ancestry or Hispanic/Latino
ethnicity meta-analyses. We identified 15 variants representing 13
loci as having high posterior probabilities of causality (>0.8): 3 for
FEV1, 3 for FVC, and 9 for FEV1/FVC (Supplementary Table 15,
Supplementary Figure 7). Of the 15 putative casual variants,
11 showed high posterior probabilities of causality (>0.8) before
considering annotations, and 4 were identified by adding func-
tional annotations. Nine were the top SNPs at that locus from the
fixed-effects meta-analysis (loci: WNT3, PMFBP1/ZFHX3, EN1/
MARCO, C2orf48/HPCAL1, CPT1C, CADPS, LOC283867/CDH5,
HDC, and CDC7/TGFBR3), while 6 were not (loci: CDK2/RAB5B,
BMS1P4, PMFBP1/ZFHX3, FLJ35282/ELAVL2, HDC, and
COL8A1).

Identification of independent signals using FINEMAP. We
used FINEMAP51 to identify variants with a high posterior
probability of causality (>0.6) independent of 118 lead variants in
pulmonary function loci identified in the current or previous
studies14. We identified 37 independent variants for 23 previously
identified loci and one independent variant at each of two novel
loci (LINC00340 and SLC25A51P1/BAI3; Supplementary
Table 16).

Gene-based analysis of GWAS results using S-PrediXcan.
Among the novel loci identified in the current GWAS of PFTs, we
identified seven variants corresponding to nine genes demon-
strating genome-wide significant evidence of association with
lung or whole blood tissue-specific expression (Supplementary
Table 17) based on the gene-based S-PrediXcan approach52.
Bayesian colocalization analysis53 indicated the following asso-
ciations demonstrated at least 50% probability of shared SNPs
underlying both gene expression and PFTs: ARHGEF17 and
FAM168A in analysis of multiethnic GWAS for FEV1/FVC based
on GTEx whole blood models, and WNT3 in analysis of multi-
ethnic GWAS for FVC based on GTEx lung models (Supple-
mentary Table 18).

Druggable targets. To investigate whether the genes identified in
our study encode proteins with predicted drug targets, we queried
the ChEMBL database (https://www.ebi.ac.uk/chembl/). In addi-
tion, we incorporated an IPA to identify potential upstream tar-
gets. Genes associated with pulmonary function, but not included
in the drug target analysis performed by Wain et al.14, were
evaluated, for a total of 139 genes outside of the MHC: 110 genes
representing the 60 novel loci identified in our fixed-effects
ancestry-specific and multiethnic meta-analysis, 13 genes repre-
senting the 6 novel loci identified in our random-effects
meta-analysis19, 3 genes representing an additional 3 loci near
significance in the African ancestry meta-analysis (BAZ2B,
NONE/PCDH10, and ADAMTS17), 9 genes representing 2 loci
identified in a recent CHARGE analysis of exome variants43,
which were also significant in our 1000 Genomes analysis (LY86/
RREB1 and SEC24C), and 4 genes representing one locus iden-
tified at genome-wide significance in a separate publication from
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one of our participating studies (HCHS/SOL)18, but also sig-
nificant in our analysis (ADORA2B/ZSWIM7/TTC19/NCOR1). In
the ChEMBL database, 17 of these genes encode proteins with
predicted or known drug targets: NR5A2, KCNK2, EDAR, KCNJ3,
NR4A2, BAZ2B, A4GNT, GSTO1, GSTO2, NCOR2, SMAD3,
NCOR1, CDK12, WNT3, PYGB, NANP, EYA2 (Supplementary
Table 19). Of these, two genes (KCNK2 and CDK12) have
approved drug targets. Using IPA, four additional genes were
predicted as drug targets (ADORA2B, APP, CRHR1, and
MAP3K1; Supplementary Table 20) and 37 genes had drugs or
chemicals as upstream regulators (Supplementary Table 21).

Discussion
By conducting a GWAS meta-analysis in a large multiethnic
population we increased the number of known loci associated
with pulmonary function by over 50%. In total, we identified 60
novel genetic regions (outside of the MHC region): 17 from
European ancestry, 8 from African ancestry, 1 from Hispanic/
Latino ethnicity, and 34 from multiethnic meta-analyses.

For 32 of the 52 loci novel loci identified in our European
ancestry and multiethnic meta-analyses, we found evidence for
look-up replication in the UK BiLEVE study, UK Biobank study,
or ICGC COPD consortium. For an additional three loci, we
found support for validation using new genomic methods such as
PAINTOR, FINEMAP, or S-PrediXcan. Specifically, 19 novel
variants replicated in look-up in a smaller independent sample of
Europeans from the UK BiLEVE study14: DCBLD2/MIR548G,
SUZ12P1, CRHR1, WNT3, ZNF337, ALX1/RASSF9, MED1/
CDK12, EYA2, RBMS3, LINC00340, FLJ35282/ELAVL2, DDHD1/
MIR5580, TSHZ3, KLHL22/MED15, FAM168A, RAB5B, JMJD1C,
AGMO, and C20orf112. Based on a minimally adjusted publicly
available analysis in a larger sample of Europeans from the UK
Biobank, an additional 11 loci replicated: NR5A2, PIK3C2B,
OTUD4/SMAD1, AP3B1, CENPW/RSPO3, SMAD3, PDXDC2P,
SOGA2, DCC, DNAH12, and KCNJ3/NR4A2. Because UK
BiLEVE is sampled from UK Biobank we are not able to perform
a combined replication meta-analysis. Additionally, the studies
adjusted for different covariates (UK BiLEVE results were
adjusted for age, sex, height, pack-years and ancestral principal
components while UK Biobank results were adjusted for only sex
and ancestral components). Among those loci which did not
directly replicate for PFTs in the UK BiLEVE or UK Biobank
datasets, the lead variants in an additional two European or
multiethnic loci were significantly associated in the ICGC Con-
sortium with COPD, which was defined using PFT measures27:
TMEM38B/ZNF462 and NCOR2/SCARB1. FINEMAP and S-
PrediXcan also produced evidence for causality for three Eur-
opean ancestry and multiethnic loci which had not replicated in
UK BiLEVE, UK Biobank or ICGC: DCAF8, AFAP1, and
SLC25A51P1/BAI3.

The few additional studies with 1000 Genomes imputed var-
iants and pulmonary function in African ancestry individuals
have smaller samples sizes making replication challenging for the
eight novel loci identified in our African ancestry meta-analyses.
Further, lead variants for six of the eight loci were low frequency
in African Ancestry (C2orf48/HPCAL1, EN1/MARCO, CADPS,
HDC, LOC283867/CDH5, and CPT1C) (MAF < 0.02), including
three not well imputed (r2 < 0.75), and monomorphic or nearly
monomorphic in other ancestries (European, Asian, and His-
panic). For the two novel African ancestry variants with MAF >
0.02 and well imputed (r2 > 0.90), we found the strongest evi-
dence for replication for RYR2 (rs3766889). This variant had a
similar effect estimate for FEV1 in CHARGE, COPDGene, and
SAPPHIRE with a significant combined association across these
adult studies. Although this particular variant did not quite meet

genome-wide significance in the multiethnic meta-analysis for
FEV1 (P= 6.56 × 10−4), another variant in this gene did for FVC
(1:237929787:T_TCA, P= 4.46 × 10−8).

Our analysis also sheds light on additional potential causal
genes at a complex locus (chromosome 17 near positions
43600000 to 44300000, hg19) previously discovered from GWAS
of FEV1, which identified KANSL1 in European populations as
the top finding for this region14,15. With the exception of a single
INDEL in KANSL1 in our European ancestry meta-analysis
(17:44173680:T_TC, P= 1.03 × 10−10), we found CRHR1 as the
strongest gene associated with FEV1 in this region. Although
some variants in CRHR1 identified in our study are within 500kb
of KANSL1 (e.g., rs16940672, 17:43908152, P= 2.07 × 10−10), a
number of significant variants in this gene are more than 500 kb
away from previously identified hits [our definition of novel] (e.g.,
rs143246821, 17:43685698, P= 9.06 × 10−10). In our multiethnic
meta-analysis, several variants in CRHR1 were associated with
FEV1 at smaller P values than variants in KANSL1. Definitive
assessment of the causal variants at this locus, as well as other
multigenic GWAS loci, will likely require additional data from
ongoing large-scale sequencing studies to enable detailed fine
mapping.

In both our European and multiethnic meta-analyses we also
noted a significant association with WNT3 on chromosome 17
near position 44800000 (hg19) which is more than 500kb from
KANSL1 or CRHR1 [our definition of novel]. We found that the
top variant in WNT3 for FEV1 among individuals of European
ancestry (rs916888, 17:44863133, P= 3.76 × 10−9) had a high
probability for causality based on PAINTOR, an analysis which
integrates functional annotations along with association statistics
and LD for each ethnicity50. We also found evidence that WNT3
may be the causal gene at this locus using S-PrediXcan, a gene
level association test that prioritizes potentially causal genes while
filtering out LD-induced false-positives52,53. Notably, S-
PrediXcan implicated WNT3 as a likely mediating gene for
FVC based on the top variant in our multiethnic meta-analyses
(rs199525, 17:44847834, P= 7.52 × 10−9), which is an eQTL SNP
for WNT3 in lung and other tissues. Further, the lead WNT3
variants for both FEV1 and FVC (rs916888 and rs199525) were
significantly associated with COPD in a look-up of a large pub-
lished meta-analysis dataset27. In addition, other genes in the
WNT signaling pathway, a fundamental development pathway,
have been implicated as influencing pulmonary function54. This
pathway was also one of the significant pathways identified in our
analysis. In a previous pathway analysis of asthma, SMAD3 has
been shown to interact with the WNT signaling pathway55.
Finally, WNT3 also emerged as having a potential druggable
target, and incorporation of pathway analysis to identify
upstream regulators found an additional four drugs in clinical use
for which WNT3 is a target molecule (chemotherapeutic agents
doxorubicin and paclitaxel, the hormone beta-estradiol and LGK-
974, a novel agent that targets a WNT-specific acyltransferase)56.
Again, further evaluation of this interesting and complex locus
which contains many significant variants in LD will benefit
from data being generated in ongoing large-scale sequencing
studies.

Some genes identified in our study play key roles in inflam-
mation, immunity, and pulmonary biology. For example,
MARCO (macrophage receptor with collagenous structure) has
been shown in murine models to be required for lung defense
against pneumonia and inhaled particles57,58. SMAD3 is part of
the SMAD family of proteins which are signal transducers and
transcriptional modulators that mediate multiple signaling
pathways. SMAD3 is activated by transforming growth factor beta
(TGF-B) which plays a key role in airway remodeling. SMAD3
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has a predicted drug target and SNPs in SMAD3 are significantly
associated with asthma in GWAS42,59.

Other genes identified in our study that are targeted by
approved drugs include CDK12 and KCNK2. CDK12 drug targets
include AT-7519, Roniciclib, AZD-5438, and PH.A-793887.
Roniciclib has been used in clinical trials including lung cancer
patients60. KCNK2 (potassium channel subfamily K member 2) is
targeted by five inhalational anesthetic agents. These agents have
antiinflammatory effects both systemically61 and in the lungs62

and meta-analysis of clinical studies shows protection against
pulmonary complications after cardiac surgery63. A recent trial
suggested that one of these inhalation agents, sevoflurane, offers
promise for reducing epithelial injury and improving outcomes in
patients with acute respiratory distress syndrome64.

In addition to querying commonly used genome databases for
functional annotation of variants, we sought to narrow down
causal variants in implicated loci using recently developed
methods that incorporate LD, functional data and/or the multi-
ethnic analysis done in this paper. In particular, PAINTOR is a
useful tool to identify potential causal variants in our novel loci as
it leverages LD across ancestral groups along with association
statistics and functional annotations50. PAINTOR identified 15
putative causal variants from 13 loci, including seven loci
uniquely identified in the multiethnic meta-analyses such as
PMFBP1/ZFHX3 and COL8A1 (part of the DCBLD2 loci). Several
of the putative causal variants from PAINTOR were the top SNPs
from the fixed-effects meta-analysis (e.g., rs916888 WNT3).
Similarly, FINEMAP has been shown to be an accurate and
efficient tool for investigating whether lead SNPs for a given loci
are driven by independent variants in the same region, especially
when annotation information is not available51. Among previous
and novel loci identified in individuals of European ancestry, we
identified 37 independent variants for 23 previously identified loci
and two lead variants for two novel loci (rs1928168 LINC00340
and rs9351637 SLC25A51P1/BAI3) with a high probability of
causality. Finally, we ran S-PrediXcan a gene level association test
that prioritizes potentially causal genes52. Seven of our novel loci
contained putative causal genes based on S-PrediXcan for lung or
whole blood tissues, including NRBF2 (part of the JMJD1C locus)
and WNT3. S-PrediXcan also highlighted the region around
chromosome 11 position 73280000 (hg19), noting strong evi-
dence for both FAM168A and ARHGEF17 which was further
supported by the colocalization analysis. Interestingly, DEPICT
also prioritized ARHGEF17, a member of the guanine nucleotide
exchange factor (GEF) family of genes which can mediate actin
polymerization and contractile sensitization in airway smooth
muscle65,66.

Rather than conducting a standard gene-based pathway ana-
lysis, we performed a newer integrative method, DEPICT, that
incorporates cell and tissue-specific functional data into a path-
way analysis to prioritize genes within implicated loci49. In
addition to identifying potential causal variants, this approach
revealed a number of fundamental development processes,
including pathways related to lung development, growth regula-
tion, and organ morphogenesis. The WNT signaling pathway was
also highlighted along with processes relevant to the pathogenesis
of COPD including extracellular matrix structure and collagen
networks. Tissue/cell type enrichment results highlighted smooth
muscle which is highly relevant for lung function. DEPICT
excludes the MHC due to extended LD in this region, which likely
explains the relative paucity of inflammation-related pathways
identified compared to previous pathway analyses in GWAS of
PFTs29,54. Indeed, standard IPA analysis of our data including the
MHC region, found that 33 of 84 genes (39%) in the 3 (out of 16)
enriched networks involved in immune or inflammatory pro-
cesses are in the MHC. The predominance of fundamental

pathways related to lung growth, differentiation and structure is
consistent with recent work67 that has rekindled interest in the
observation made 40 years ago68 that individuals can cross the
threshold for diagnosis of COPD either by rapid decline in
adulthood or by starting from a lower baseline of maximal pul-
monary function attained during growth. Within this context,
understanding the genetic (and environmental) factors that
influence the variability in maximal lung function attained during
the first three decades of life is essential to reducing the public
health burden of COPD69.

In summary, our study extends existing knowledge of the
genetic landscape of PFTs by utilizing the more comprehensive
1000 Genomes imputed variants, increasing the sample size,
including multiple ancestries and ethnicities, and employing
newly developed computational applications to interrogate
implicated loci. We discovered 60 novel loci associated with
pulmonary function and found evidence of replication in UK
BiLEVE, UK Biobank, or ICGC for 32 novel loci and validation
for another 3 loci. We found evidence that several variants in
these loci were missense mutations and had possible deleterious
or regulatory effects, and many had significant eQTLs. Further,
using new genomic methods that incorporate LD, functional data
and the multiethnic structure of our data, we shed light on
potential causal genes and variants in implicated loci. Finally,
several of the newly identified genes linked to lung function are
druggable targets, highlighting the clinical relevance of our inte-
grative genomics approach.

Methods
Studies. Member and affiliate studies from The CHARGE consortium with pul-
monary function and 1000 Genomes imputed genetic data were invited to parti-
cipate in the present meta-analysis. Participating studies included: AGES, ALHS,
ARIC, CARDIA, CHS, FamHS, FHS, GOYA, HCHS/SOL, HCS, Health ABC,
Healthy Twin, JHS, KARE3, LifeLines, LLFS, MESA, NEO, 1982 PELOTAS, RSI,
RSII, RIII. Characteristics of these studies are provided in Supplementary Table 22
and descriptions of study designs are provided in the Supplementary Note 1;
informed consent was obtained from participants in each study. Although our
meta-analysis included studies of asthma (ALHS) and obesity (GOYA and NEO),
exclusion of these studies did not materially change results (Supplementary
Note 2). Further, previous meta-analyses of GWAS of pulmonary function have
demonstrated high correlation between results when including or excluding asthma
and COPD cases8.

Pulmonary function. Spirometry measures of pulmonary function (FEV1, FVC,
and the ratio FEV1/FVC) were collected by trained staff in each study according to
American Thoracic Society or European Respiratory Society guidelines. See cohort
descriptions in Supplementary Note 1 for more details.

Variants. Studies used various genotyping platforms, including Affymetrix Human
Array 6.0, Illumina Human Omni Chip 2.5, and others, as described in cohort
descriptions in the Supplementary Note 1. Using MACH, MINIMAC, or
IMPUTE2, studies then used genotyped data to impute variants based on the 1000
Genomes Integrated phase 1 reference panel. One study (Hunter Community)
imputed to the 1000 Genomes European phase 1 reference panel; sensitivity ana-
lyses excluding this study from the European ancestry meta-analysis showed no
material differences (see Supplementary Note 2). The two Asian studies (Healthy
Twin and KARE3) imputed to the 1000 Genomes Asian phase 1 reference panel.

Statistical analysis. Within each study, linear regression was used to model the
additive effect of variants on PFTs. FEV1 and FVC were modeled as milliliters and
FEV1/FVC as a proportion. Studies were asked to adjust analyses for age, age2, sex,
height, height2, smoking status (never, former, and current), pack-years of smok-
ing, center (if multicenter study), and ancestral principal components, including a
random familial effect to account for family relatedness when appropriate70.
Models of FVC were additionally adjusted for weight. Analyses were conducted
using ProbAbel, PLINK, FAST, or the R kinship package as described in the cohort
descriptions of the Supplementary Note 1.

Ancestry-specific and multiethnic fixed-effects meta-analyses using inverse
variance weighting of study-specific results with genomic control correction were
conducted in Meta-Analysis Helper (METAL, http://www.sph.umich.edu/csg/
abecasis/metal/). Multiethnic random-effects meta-analyses using the four
ancestry-specific fixed-effects meta-analysis results were conducted using the Han-
Eskin model19 in METASOFT (http://genetics.cs.ucla.edu/meta/). Only variants
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with p-values for association <0.05 or P values for heterogeneity <0.1 from fixed-
effects models were included in the random-effects models.

Variants with imputation quality scores (r2) less than 0.3 and/or a minor allele
count (MAC) less than 20 were excluded from each study prior to meta-analysis.
Following meta-analysis, we also excluded variants with less than one-third the
total sample size or less than the sample size of the largest study for a given meta-
analysis to achieve the following minimal sample sizes: 20,184 for European
ancestry; 2810 for African ancestry; 7862 for Asian ancestry; 4435 for Hispanic/
Latino ethnicity; and 30,238 for Multiethnic.

Significance was defined as P < 5 × 10−814,17. Novel variants were defined as
being more than ±500 kb from the top variant of a loci identified in a previous
GWAS of pulmonary function; previous multiethnic GWAS have used this
definition16. We used the list of 97 known variants as published in the recent UK
BiLEVE paper14 with the following modifications: added variants in DDX1, DNER,
CHRNA5 since listed in GWAS catalog; added variants in LCT, FGF10, LY86/
RREB1, SEC24C, RPAP1, CASC17, and UQCC1 since identified in exome chip
paper43; added variant in TMEM163 identified in Loth et al. paper10; used
17:44339473 instead of 17:44192590 to represent KANSL1 since 17:44339473 was
the original variant listed for KANSL1 in Wain et al.15; and used 12:28283187
instead of 12:28689514 to represent PTHLH since 12:28283187 was the original
variants listed for PTHLH in Soler Artigas et al.13.

Genomic inflation factors (lambda values) from quantile–quantile plots of
observed and expected P values for ancestry- and phenotype-specific meta-analyses
are presented in Supplementary Table 23. Lambda values were slightly higher in
European and multiethnic meta-analyses (range of lambda 1.12–1.16) than in other
ancestry-specific meta-analyses (range of lambda 1.01–1.06) likely due to the much
larger sample sizes of the European and multiethnic meta-analyses71.

LD score regression. The SNP heritability, i.e., the variance explained by genetic
variants, was calculated from the European ancestry GWAS summary statistics
(with genomic control off) using LD score regression (https://github.com/bulik/
ldsc)37. Partitioned heritability was also calculated using the method described by
Finucane et al.38. In total, 28 functional annotation classes were used for this
analysis, including coding regions, regions conserved in mammals, CCCTC-
binding factor, DNase genomic foot printing, DHS, fetal DHS, enhancer regions;
including superenhancers and active enhancers from the FANTOM5 panel of
samples, histone marks including two versions of acetylation of histone H3 at
lysine 27 (H3K27ac and H3K27ac2), histone marks monomethylation (H3K4me1),
trimethylation of histone H3 at lysine 4 (H3K4me), and acetylation of histone H3
at lysine 9 (H3K9ac5). In addition to promotor and intronic regions, transcription
factor binding site, transcription start site, and untranslated regions (UTR3 and
UTR5). A P value of 0.05/28 classes <1.79 × 10−3 was considered statistically sig-
nificant. Genetic correlation between our pulmonary function (FEV1, FVC and
FEV1/FVC) results and publicly available GWAS of ever smoking40 and height41

was also investigated using LD score regression39.

Functional annotation. To find functional elements in novel genome-wide sig-
nificant signals, we annotated SNPs using various databases. We used Ensembl
VEP44 (Accessed 17 Jan 2017) and obtained mapped genes, transcripts, con-
sequence of variants on protein sequence, SIFT45 scores, and PolyPhen-246 scores.
We checked if there were deleterious variants using CADD v1.347, which integrates
multiple annotations, compares each variant with possible substitutions across the
human genome, ranks variants, and generates raw and scaled C-scores. A variant
having a scaled C-score of 10 or 20 indicates that it is predicted to be in the top 10%
or 1% deleterious changes in human genome, respectively. We used a cutoff of 15
to provide deleterious variants since it is the median for all possible splice site
changes and nonsynonymous variants (http://cadd.gs.washington.edu/info,
Accessed 18 Jan 2017). To find potential regulatory variants, we used Reg-
ulomeDB48 (Accessed 17 Jan 2017), which integrates DNA features and regulatory
information including DNAase hypersensitivity, transcription factor binding sites,
promoter regions, chromatin states, eQTLs, and methylation signals based on
multiple high-throughput datasets and assign a category to each variant. Variants
having RegulomeDB categories 1 or 2, meaning “likely to affect binding and linked
to expression of a gene target” or “likely to affect binding,” were considered as
regulatory variants.

Pathway analysis using DEPICT and IPA. For gene prioritization and identifi-
cation of enriched pathways and tissues/cell types, we used DEPICT49 with asso-
ciation results for FEV1, FVC, and FEV1/FVC. We used association results from
our European ancestry meta-analysis and the LD structure from 1000 Genomes
European (CEU, GBR, and TSI) reference panel. The software excludes the MHC
region on chromosome 6 due to extended LD structure in the region. We ran a
version of DEPICT for 1000 Genomes imputed meta-analysis results using its
default parameters with an input file containing chromosomal location and P
values for variants having unadjusted P < 1 × 10−5. For gene set enrichment ana-
lyses, DEPICT utilizes 14,461 reconstituted gene sets generated by genes’ cor-
egulation patterns in 77,840 gene expression microarray data. For tissue/cell type
enrichment analysis, mapped genes were tested if they are highly expressed in 209
medical subject headings annotations using 37,427 microarray data. Gene prior-
itization analysis using cofunctionality of genes can provide candidate causal genes

in associated loci even if the loci are poorly studied or a gene is not the closest gene
to a genome-wide significant variant. We chose FDR < 0.05 as a cutoff for statistical
significance in these enrichment analyses and gene prioritization results. Because
DEPICT excludes the MHC, we also ran a pathway analysis with IPA (Ingenuity
Systems, Redwood City, CA, USA, http://www.ingenuity.com/) on genes to which
variants with P < 1 × 10−5 annotated.

PAINTOR. To identify causal variants in novel genome-wide significant loci, we
used a transethnic functional fine mapping method50 implemented in PAINTOR
(https://github.com/gkichaev/PAINTOR_FineMapping, Accessed 2 May 2016).
This method utilizes functional annotations along with association statistics (Z-
scores) and LD information for each locus for each ancestry. We included our
ancestry-specific meta-analysis results and used the African, American, European,
and East Asian individuals from 1000 Genomes to calculate LD72. For PAINTOR
we focused on 22 novel loci identified in our European ancestry and multiethnic
fixed-effects meta-analyses which had at least five genome-wide significant variants
as well as all nine African or Hispanic loci which had at least one genome-wide
significant variant. In addition, we included six loci which overlapped with the UK
BiLEVE 1000 Genomes paper14 and one locus with the CHARGE exome paper43,
since we ran PAINTOR prior to those publications. To reduce computational
burden, we limited flanking regions to ±100 kilobase (kb) from the top SNPs and
included variants with absolute value of Z-score greater than 1.96.

We used 269 publicly available annotations relevant to “lung”, “bronch”, or
“pulmo” from the following: hypersensitivity sites73, superenhancers74, Fantom5
enhancer and transcription start site regions75, immune cell enhancers76, and
methylation and acetylation marks ENCODE77. We ran PAINTOR for each
phenotype separately to prioritize annotations based on likelihood-ratio
statistics78,79. We included minimally correlated top annotations (less than five for
each phenotype) to identify causal variants.

For the 38 loci from the fixed-effects meta-analysis, we used PAINTOR to
construct credible sets of causal variants using a Bayesian meta-analysis framework.
To obtain 95% credible sets for each locus, we ranked SNPs based on posterior
probabilities of causality (high to low) and then took the SNPs filling in 95% of the
summed posterior probability. We computed the median number of SNPs in the
credible sets for ancestry-specific and multiethnic analyses of each trait.

FINEMAP. We used FINEMAP51 to identify signals independent of lead variants
for pulmonary function loci identified in the current or previous studies14. The
Rotterdam Study (N= 6291), one of the larger cohort studies included in our meta-
analysis, was used as a reference population. SNPs with MAF of <1% were
excluded, leaving 118 SNPs for analysis. Ten SNPs for FEV1 and FVC and 20 SNPs
for FEV1/FVC were further excluded because the LD matrix of the reference file
from the Rotterdam Study did not represent the correlation matrix of the total
study population. We allowed up to 10 causal SNPs per loci in FINEMAP analyses.
To reduce the chance of false positive findings, we also conducted sensitivity
analyses allowing up to 15 causal SNPs for loci with more than four SNPs with
posterior probabilities of >0.8.

S-PrediXcan. S-PrediXcan is a summary statistics based approach for gene-based
analysis52 that was derived as an extension of the PrediXcan method for integration
of GWAS and reference transcriptome data80. We used the S-PrediXcan approach
to prioritize potentially causal genes, coupled with a Bayesian colocalization pro-
cedure53 used to filter out LD-induced false-positives. S-PrediXcan was used to
analyze both European ancestry and multiethnic GWAS summary data for pul-
monary function tests from the current study.

S-PrediXcan analysis was performed using the following publicly available
tissue-specific expression models (http://predictdb.org) from the GTEx project
v6p28: (1) GTEx Lung (278 samples) and (2) GTEx whole blood (338 samples).
Approximately, 85% of participants in GTEx are white, 12% African American, and
3% of other races/ethnicities. Gene-based S-PrediXcan results were filtered on the
following: (1) proportion of SNPs used= (n SNPs available in GWAS summary
data)/(n SNPs in prediction model) > 0.6, and (2) prediction performance R-
squared > 0.01. Following application of S-PrediXcan to each of the GWAS
summary data sets, we computed Bonferroni-corrected P values derived as the
nominal P value for each gene-based test divided by the number of genes passing
specified filters in each analysis to test whether genetically regulated gene
expression was associated with the trait of interest. The genome-wide S-PrediXcan
results were then merged with novel loci from the current GWAS study by
identifying all matches in which the novel locus SNP was within 500kb of the start
of the gene.

We further incorporated a Bayesian colocalization approach53 to interpret the
extent to which S-PrediXcan results may have been influenced by LD within the
region of interest. The Bayesian colocalization procedure was run using the
following priors: p1= 1e−4; prior probability SNP associated to trait 1, p2= 1e−4;
prior probability SNP associated to trait 2, p12= 1e−5; prior probability SNP
associated to both traits. The procedure generated posterior probabilities that
correspond to one of the following hypotheses: a region is (H0) has no association
with neither trait, (H1) associated with PFT phenotype but not gene expression,
(H2) associated with gene expression but not PFT phenotype, (H3) associated with
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both traits, due to two independent SNPs, and (H4) associated with both traits, due
to one shared SNP.

Druggable targets. We searched annotated gene lists against the ChEMBL data-
base (v22.1, updated on November 15, 2016) to identify genes as targets of
approved drugs or drugs in development. In addition, we used the Ingenuity
Pathway Analysis (IPA, www.ingenuity.com, content of 2017-06-22) to identify
drug targets and upstream regulators of the gene lists. We reported the upstream
regulators in the following categories, biologic drug, chemical—endogenous
mammalian, chemical—kinase inhibitor, chemical—other, chemical drug, chemical
reagent, and chemical toxicant.

Data availability. The complete meta-analysis results have been deposited in the
database of Genotypes and Phenotypes (dbGaP) under the CHARGE acquisition
number [phs000930]. GWAS data for most US studies are already available in
dbGAP. For all other studies, please send requests to the study PI or Stephanie
London (london2@niehs.nih.gov) who will forward them to the relevant party.
Requests for METAL code can be directed to Stephanie London.
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