52 research outputs found

    Addressing the [O III]/Hβ offset of dwarf galaxies in the RESOLVE survey

    Get PDF
    Metal-poor dwarf galaxies in the local universe, such as those found in the RESOLVE galaxy survey, often produce high [O III]/Hβ ratios close to the star-forming demarcation lines of the diagnostic BPT diagram. Modelling the emission from these galaxies at lower metallicities generally underpredicts this line ratio, which is typically attributed to a deficit of photons >35 eV. We show that applying a model that includes empirical abundances scaled with metallicity strongly influences the thermal balance in HII regions and preserves the [O III]/Hβ offset even in the presence of a harder radiation field generated by interacting binaries. Additional heating mechanisms are more successful in addressing the offset. In accordance with the high sSFR typical of dwarf galaxies in the sample, we demonstrate that cosmic ray heating serves as one mechanism capable of aligning spectral synthesis predictions with observations. We also show that incorporating a range of physical conditions in our modelling can create even better agreement between model calculations and observed emission-line ratios. Together these results emphasize that both the hardness of the incident continuum and the variety of physical conditions present in nebular gas clouds must be accurately accounted for prior to drawing conclusions from emission-line diagnostic diagrams

    Galaxy and Mass Assembly (GAMA): The stellar mass budget of galaxy spheroids and discs

    Get PDF
    We build on a recent photometric decomposition analysis of 7506 Galaxy and Mass Assembly (GAMA) survey galaxies to derive stellar mass function fits to individual spheroid and disc component populations down to a lower mass limit of log(M*/M⊙) = 8. We find that the spheroid/disc mass distributions for individual galaxy morphological types are well described by single Schechter function forms. We derive estimates of the total stellar mass densities in spheroids (ρspheroid = 1.24 ± 0.49 × 108 M⊙ Mpc −3h0.7) and discs (ρdisc = 1.20 ± 0.45 × 108 M⊙ Mpc −3h0.7), which translates to approximately 50 per cent of the local stellar mass density in spheroids and 48 per cent in discs. The remaining stellar mass is found in the dwarf ‘little blue spheroid’ class, which is not obviously similar in structure to either classical spheroid or disc populations. We also examine the variation of component mass ratios across galaxy mass and group halo mass regimes, finding the transition from spheroid to disc mass dominance occurs near galaxy stellar mass ∼1011 M⊙ and group halo mass ∼1012.5 M⊙h−1. We further quantify the variation in spheroid-to-total mass ratio with group halo mass for central and satellite populations as well as the radial variation of this ratio within groups

    Galaxy And Mass Assembly (GAMA): detection of low-surface-brightness galaxies from SDSS data

    Get PDF
    We report on a search for new low-surface-brightness galaxies (LSBGs) using Sloan Digital Sky Survey (SDSS) data within the Galaxy And Mass Assembly (GAMA) equatorial fields. The search method consisted of masking objects detected with SDSS PHOTO, combining gri images weighted to maximize the expected signal-to-noise ratio, and smoothing the images. The processed images were then run through a detection algorithm that finds all pixels above a set threshold and groups them based on their proximity to one another. The list of detections was cleaned of contaminants such as diffraction spikes and the faint wings of masked objects. From these, selecting potentially the brightest in terms of total flux, a list of 343 LSBGs was produced having been confirmed using VISTA Kilo-degree Infrared Galaxy Survey (VIKING) imaging. The photometry of this sample was refined using the deeper VIKING Z band as the aperture-defining band. Measuring their g − i and J − K colours shows that most are consistent with being at redshifts less than 0.2. The photometry is carried out using an AUTO aperture for each detection giving surface brightnesses of μr ≳ 25 mag arcsec−2 and magnitudes of r > 19.8 mag. None of these galaxies are bright enough to be within the GAMA main survey limit but could be part of future deeper surveys to measure the low-mass end of the galaxy stellar mass function

    The baryonic collapse efficiency of galaxy groups in the RESOLVE and ECO surveys

    Get PDF
    We examine the z = 0 group-integrated stellar and cold baryonic (stars + cold atomic gas) mass functions (group SMF and CBMF) and the baryonic collapse efficiency (group cold baryonic to dark matter halo mass ratio) using the RESOLVE and ECO survey galaxy group catalogs and a GALFORM semi-analytic model (SAM) mock catalog. The group SMF and CBMF fall off more steeply at high masses and rise with a shallower low-mass slope than the theoretical halo mass function (HMF). The transition occurs at the group-integrated cold baryonic mass Mbary cold ~ 1011 M. The SAM, however, has significantly fewer groups at the transition mass ∼1011 M and a steeper low-mass slope than the data, suggesting that feedback is too weak in low-mass halos and conversely too strong near the transition mass. Using literature prescriptions to include hot halo gas and potential unobservable galaxy gas produces a group BMF with a slope similar to the HMF even below the transition mass. Its normalization is lower by a factor of ∼2, in agreement with estimates of warm-hot gas making up the remaining difference. We compute baryonic collapse efficiency with the halo mass calculated two ways, via halo abundance matching (HAM) and via dynamics (extended all the way to three-galaxy groups using stacking). Using HAM, we find that baryonic collapse efficiencies reach a flat maximum for groups across the halo mass range of Mhalo ~ 1011.4 - 12 M, which we label “nascent groups.” Using dynamics, however, we find greater scatter in baryonic collapse efficiencies, likely indicating variation in group hot-to-cold baryon ratios. Similarly, we see higher scatter in baryonic collapse efficiencies in the SAM when using its true groups and their group halo masses as opposed to friends-of-friends groups and HAM masses

    Void galaxies follow a distinct evolutionary path in the environmental context catalog

    Get PDF
    We measure the environmental dependence, where environment is defined by the distance to the third nearest neighbor, of multiple galaxy properties inside the Environmental COntext (ECO) catalog. We focus primarily on void galaxies, which we define as the 10% of galaxies having the lowest local density. We compare the properties of void and non-void galaxies: baryonic mass, color, fractional stellar mass growth rate (FSMGR), morphology, and gas-to-stellar-mass ratio (estimated from a combination of H I data and photometric gas fractions calibrated with the REsolved Spectroscopy Of a Local VolumE survey). Our void galaxies typically have lower baryonic masses than galaxies in denser environments, and they display the properties expected of a lower mass population: they have more late types, are bluer, have a higher FSMGR, and are more gas-rich. We control for baryonic mass and investigate the extent to which void galaxies are different at fixed mass. Void galaxies are bluer, more gas-rich, and more star-forming at fixed mass than non-void galaxies, which is a possible signature of galaxy assembly bias. Furthermore, we show that these trends persist even at fixed mass and morphology, and we find that voids host a distinct population of early types that are bluer and more star-forming than the typical red and quenched early types. In addition to these empirical observational results, we also present theoretical results from mock catalogs with built-in galaxy assembly bias. We show that a simple matching of galaxy properties to (sub)halo properties, such as mass and age, can recover the observed environmental trends in ECO galaxies

    Galaxy And Mass Assembly (GAMA): the galaxy stellar mass function to z = 0.1 from the r-band selected equatorial regions

    Get PDF
    We derive the low-redshift galaxy stellar mass function (GSMF), inclusive of dust corrections, for the equatorial Galaxy And Mass Assembly (GAMA) data set covering 180 deg2. We construct the mass function using a density-corrected maximum volume method, using masses corrected for the impact of optically thick and thin dust. We explore the galactic bivariate brightness plane (M⋆–μ), demonstrating that surface brightness effects do not systematically bias our mass function measurement above 107.5 M⊙. The galaxy distribution in the M–μ plane appears well bounded, indicating that no substantial population of massive but diffuse or highly compact galaxies are systematically missed due to the GAMA selection criteria. The GSMF is fitted with a double Schechter function, with M⋆=1010.78±0.01±0.20M⊙ M⋆=1010.78±0.01±0.20M⊙ , ϕ⋆1=(2.93±0.40)×10−3h370 ϕ1⋆=(2.93±0.40)×10−3h703 Mpc−3, α1 = −0.62 ± 0.03 ± 0.15, ϕ⋆2=(0.63±0.10)×10−3h370 ϕ2⋆=(0.63±0.10)×10−3h703 Mpc−3 and α2 = −1.50 ± 0.01 ± 0.15. We find the equivalent faint end slope as previously estimated using the GAMA-I sample, although we find a higher value of M⋆ M⋆ . Using the full GAMA-II sample, we are able to fit the mass function to masses as low as 107.5  M⊙, and assess limits to 106.5  M⊙. Combining GAMA-II with data from G10-COSMOS, we are able to comment qualitatively on the shape of the GSMF down to masses as low as 106 M⊙. Beyond the well-known upturn seen in the GSMF at 109.5, the distribution appears to maintain a single power-law slope from 109 to 106.5. We calculate the stellar mass density parameter given our best-estimate GSMF, finding Ω⋆=1.66+0.24−0.23±0.97h−170×10−3 Ω⋆=1.66−0.23+0.24±0.97h70−1×10−3 , inclusive of random and systematic uncertainties

    Galaxy and Mass Assembly (GAMA): morphological transformation of galaxies across the green valley

    Get PDF
    We explore constraints on the joint photometric and morphological evolution of typical low redshift galaxies as they move from the blue cloud through the green valley and onto the red sequence. We select GAMA survey galaxies with 10.25 < log(M*/M⊙) < 10.75 and z < 0.2 classified according to their intrinsic u* − r* colour. From single component Sérsic fits, we find that the stellar mass-sensitive K −band profiles of red and green galaxy populations are very similar, while g −band profiles indicate more disk-like morphologies for the green galaxies: apparent (optical) morphological differences arise primarily from radial mass-to-light ratio variations. Two-component fits show that most green galaxies have significant bulge and disk components and that the blue to red evolution is driven by colour change in the disk. Together, these strongly suggest that galaxies evolve from blue to red through secular disk fading and that a strong bulge is present prior to any decline in star formation. The relative abundance of the green population implies a typical timescale for traversing the green valley ∼1 − 2 Gyr and is independent of environment, unlike that of the red and blue populations. While environment likely plays a rôle in triggering the passage across the green valley, it appears to have little effect on time taken. These results are consistent with a green valley population dominated by (early type) disk galaxies that are insufficiently supplied with gas to maintain previous levels of disk star formation, eventually attaining passive colours. No single event is needed quench their star formation
    corecore