11 research outputs found

    Orb-web spider Argiope (Araneidae) as indigenous arrow poison of G/ui and G//ana San hunters in the Kalahari

    Get PDF
    Hunting has been crucial in early human evolution. Some San (Bushmen) of southern Africa still practice their indigenous hunting. The use of poisons is one remarkable aspect of their bow-and-arrow hunting but the sources, taxonomic identifications of species used, and recipes, are not well documented. This study reports on fieldwork to investigate recent indigenous hunting practices of G/ui and G//ana San communities in the Central Kalahari Game Reserve (CKGR), Botswana. Here we discuss their use of spider poison. The hunters use the contents of the opisthosoma (‘abdomen’) of a spider as sole ingredient of the arrow poison and discard the prosoma that contains the venom-glands. Using taxonomic keys, we identified the spider as the garden orb-web spider Argiope australis (Walckenaer 1805) (Araneidae). The hunters’ choice of this species is remarkable given the scientific perception that A. australis is of little medical importance. The species choice raises questions about how the spider fluids could kill game, particularly when the prosoma, which contains the venom glands, is not used. Possibilities include trauma, as a source of pathogens, or abdomen- containing toxins. Based on characteristics of Argiope Audouin 1826, we hypothesize that the choice of this species for arrow poisons might have evolved from the recognition of aposematic signalling or spiritual symbolism. Indigenous knowledge (IK) is an important source for advances in biotechnology but is in decline worldwide. The study contributes to the documentation of the San people, and their ancient IK, which is threatened by marginalization, political pressures, and climate change

    The evolving SARS-CoV-2 epidemic in Africa: insights from rapidly expanding genomic surveillance

    Get PDF
    Investment in SARS-CoV-2 sequencing in Africa over the past year has led to a major increase in the number of sequences generated, now exceeding 100,000 genomes, used to track the pandemic on the continent. Our results show an increase in the number of African countries able to sequence domestically, and highlight that local sequencing enables faster turnaround time and more regular routine surveillance. Despite limitations of low testing proportions, findings from this genomic surveillance study underscore the heterogeneous nature of the pandemic and shed light on the distinct dispersal dynamics of Variants of Concern, particularly Alpha, Beta, Delta, and Omicron, on the continent. Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve, while the continent faces many emerging and re-emerging infectious disease threats. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance.

    Get PDF
    Investment in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing in Africa over the past year has led to a major increase in the number of sequences that have been generated and used to track the pandemic on the continent, a number that now exceeds 100,000 genomes. Our results show an increase in the number of African countries that are able to sequence domestically and highlight that local sequencing enables faster turnaround times and more-regular routine surveillance. Despite limitations of low testing proportions, findings from this genomic surveillance study underscore the heterogeneous nature of the pandemic and illuminate the distinct dispersal dynamics of variants of concern-particularly Alpha, Beta, Delta, and Omicron-on the continent. Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve while the continent faces many emerging and reemerging infectious disease threats. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance

    Get PDF
    INTRODUCTION Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic. RATIONALE We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs). RESULTS Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants. CONCLUSION Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century

    Orb-web spider Argiope (Araneidae) as indigenous arrow poison of G/ui and G//ana San hunters in the Kalahari

    No full text
    Hunting has been crucial in early human evolution. Some San (Bushmen) of southern Africa still practice their indigenous hunting. The use of poisons is one remarkable aspect of their bow-and-arrow hunting but the sources, taxonomic identifications of species used, and recipes, are not well documented. This study reports on fieldwork to investigate recent indigenous hunting practices of G/ui and G//ana San communities in the Central Kalahari Game Reserve (CKGR), Botswana. Here we discuss their use of spider poison. The hunters use the contents of the opisthosoma (‘abdomen’) of a spider as sole ingredient of the arrow poison and discard the prosoma that contains the venom-glands. Using taxonomic keys, we identified the spider as the garden orb-web spider Argiope australis (Walckenaer 1805) (Araneidae). The hunters’ choice of this species is remarkable given the scientific perception that A. australis is of little medical importance. The species choice raises questions about how the spider fluids could kill game, particularly when the prosoma, which contains the venom glands, is not used. Possibilities include trauma, as a source of pathogens, or abdomen-containing toxins. Based on characteristics of Argiope Audouin 1826, we hypothesize that the choice of this species for arrow poisons might have evolved from the recognition of aposematic signalling or spiritual symbolism. Indigenous knowledge (IK) is an important source for advances in biotechnology but is in decline worldwide. The study contributes to the documentation of the San people, and their ancient IK, which is threatened by marginalization, political pressures, and climate change

    Orb-web spider Argiope (Araneidae) as indigenous arrow poison of G/ui and G//ana San hunters in the Kalahari.

    No full text
    Hunting has been crucial in early human evolution. Some San (Bushmen) of southern Africa still practice their indigenous hunting. The use of poisons is one remarkable aspect of their bow-and-arrow hunting but the sources, taxonomic identifications of species used, and recipes, are not well documented. This study reports on fieldwork to investigate recent indigenous hunting practices of G/ui and G//ana San communities in the Central Kalahari Game Reserve (CKGR), Botswana. Here we discuss their use of spider poison. The hunters use the contents of the opisthosoma ('abdomen') of a spider as sole ingredient of the arrow poison and discard the prosoma that contains the venom-glands. Using taxonomic keys, we identified the spider as the garden orb-web spider Argiope australis (Walckenaer 1805) (Araneidae). The hunters' choice of this species is remarkable given the scientific perception that A. australis is of little medical importance. The species choice raises questions about how the spider fluids could kill game, particularly when the prosoma, which contains the venom glands, is not used. Possibilities include trauma, as a source of pathogens, or abdomen-containing toxins. Based on characteristics of Argiope Audouin 1826, we hypothesize that the choice of this species for arrow poisons might have evolved from the recognition of aposematic signalling or spiritual symbolism. Indigenous knowledge (IK) is an important source for advances in biotechnology but is in decline worldwide. The study contributes to the documentation of the San people, and their ancient IK, which is threatened by marginalization, political pressures, and climate change

    Flying Start NHSℱ: easing the transition from student to registered health professional: Transition from student to registered practitioner

    No full text
    Aims and objectives. To evaluate the impact and effectiveness of Flying Start NHSℱ on the confidence, competence and career development of newly qualified practitioners.Background. The first year of practice as a registered nurse, midwife, or allied health professional is recognised as challenging. This paper presents the findings of a two‐year evaluation of Flying Start NHSℱ, a web‐based programme developed by NHS Education Scotland to support newly qualified health professionals during the transition from student to qualified practitioner.Design. Descriptive design with one to one and focus group interviews, plus a survey.Methods. The evaluation employed a multi‐method approach including telephone interviews with Flying Start NHSℱ leads/coordinators (n=21) and mentors (n=22) and focus groups with newly qualified practitioners (nn=95). An online survey was completed by 547 newly qualified practitioners.Results. A majority of newly qualified practitioners reported that Flying Start NHSℱ had been useful in terms of clinical skills development and confidence. Those who were able to take protected time were more likely to complete the learning units and report that the support they received was good. Both newly qualified practitioners and mentors reported a lack of time. Newly qualified practitioners who took up posts in the community expressed greater satisfaction with the support received.Conclusions. NHS Boards should ensure that there is an ethos of support at all levels, as well as an understanding of the purpose of Flying Start NHSℱ and what newly qualified practitioners require to do to complete it. The expectation that newly qualified practitioners will enrol on Flying Start NHSℱ should be accompanied by an expectation that they will complete the programme in their first year, coupled with support to enable them to do so.Relevance to clinical practice. Undertaking Flying Start NHSℱ in the first year of employment increases clinical skills development and confidence. Mentors require training and time to enable them to provide support

    Development of a clinical prediction rule to identify patients with neck pain likely to benefit from cervical traction and exercise

    No full text
    The objective of the study was to develop a clinical prediction rule (CPR) to identify patients with neck pain likely to improve with cervical traction. The study design included prospective cohort of patients with neck pain referred to physical therapy. Development of a CPR will assist clinicians in classifying patients with neck pain likely to benefit from cervical traction. Eighty patients with neck pain received a standardized examination and then completed six sessions of intermittent cervical traction and cervical strengthening exercises twice weekly for 3 weeks. Patient outcome was classified at the end of treatment, based on perceived recovery according to the global rating of change. Patients who achieved a change ≄+6 (“A great deal better” or “A very great deal better”) were classified as having a successful outcome. Univariate analyses (t tests and chi-square) were conducted on historical and physical examination items to determine potential predictors of successful outcome. Variables with a significance level of P ≀ 0.15 were retained as potential prediction variables. Sensitivity, specificity and positive and negative likelihood ratios (LRs) were then calculated for all variables with a significant relationship with the reference criterion of successful outcome. Potential predictor variables were entered into a step-wise logistic regression model to determine the most accurate set of clinical examination items for prediction of treatment success. Sixty-eight patients (38 female) were included in data analysis of which 30 had a successful outcome. A CPR with five variables was identified: (1) patient reported peripheralization with lower cervical spine (C4–7) mobility testing; (2) positive shoulder abduction test; (3) age ≄55; (4) positive upper limb tension test A; and (5) positive neck distraction test. Having at least three out of five predictors present resulted in a +LR equal to 4.81 (95% CI = 2.17–11.4), increasing the likelihood of success with cervical traction from 44 to 79.2%. If at least four out of five variables were present, the +LR was equal to 23.1 (2.5–227.9), increasing the post-test probability of having improvement with cervical traction to 94.8%. This preliminary CPR provides the ability to a priori identify patients with neck pain likely to experience a dramatic response with cervical traction and exercise. Before the rule can be implemented in routine clinical practice, future studies are necessary to validate the rule. The CPR developed in this study may improve clinical decision-making by assisting clinicians in identifying patients with neck pain likely to benefit from cervical traction and exercise
    corecore