40 research outputs found

    Phylogenomic evidence for a common ancestor of mitochondria and the SAR11 clade

    Get PDF
    Mitochondria share a common ancestor with the Alphaproteobacteria, but determining their precise origins is challenging due to inherent difficulties in phylogenetically reconstructing ancient evolutionary events. Nonetheless, phylogenetic accuracy improves with more refined tools and expanded taxon sampling. We investigated mitochondrial origins with the benefit of new, deeply branching genome sequences from the ancient and prolific SAR11 clade of Alphaproteobacteria and publicly available alphaproteobacterial and mitochondrial genome sequences. Using the automated phylogenomic pipeline Hal, we systematically studied the effect of taxon sampling and missing data to accommodate small mitochondrial genomes. The evidence supports a common origin of mitochondria and SAR11 as a sister group to the Rickettsiales. The simplest explanation of these data is that mitochondria evolved from a planktonic marine alphaproteobacterial lineage that participated in multiple inter-specific cell colonization events, in some cases yielding parasitic relationships, but in at least one case producing a symbiosis that characterizes modern eukaryotic life

    Seasonal dynamics of active SAR11 ecotypes in the oligotrophic Northwest Mediterranean Sea

    Get PDF
    A seven-year oceanographic time series in NW Mediterranean surface waters was combined with pyrosequencing of ribosomal RNA (16S rRNA) and ribosomal RNA gene copies (16S rDNA) to examine the environmental controls on SAR11 ecotype dynamics and potential activity. SAR11 diversity exhibited pronounced seasonal cycles remarkably similar to total bacterial diversity. The timing of diversity maxima was similar across narrow and broad phylogenetic clades and strongly associated with deep winter mixing. Diversity minima were associated with periods of stratification that were low in nutrients and phytoplankton biomass and characterised by intense phosphate limitation (turnover time80%) by SAR11 Ia. A partial least squares (PLS) regression model was developed that could reliably predict sequence abundances of SAR11 ecotypes (Q2=0.70) from measured environmental variables, of which mixed layer depth was quantitatively the most important. Comparison of clade-level SAR11 rRNA:rDNA signals with leucine incorporation enabled us to partially validate the use of these ratios as an in-situ activity measure. However, temporal trends in the activity of SAR11 ecotypes and their relationship to environmental variables were unclear. The strong and predictable temporal patterns observed in SAR11 sequence abundance was not linked to metabolic activity of different ecotypes at the phylogenetic and temporal resolution of our study

    The Biodiversity of the Mediterranean Sea: Estimates, Patterns, and Threats

    Get PDF
    The Mediterranean Sea is a marine biodiversity hot spot. Here we combined an extensive literature analysis with expert opinions to update publicly available estimates of major taxa in this marine ecosystem and to revise and update several species lists. We also assessed overall spatial and temporal patterns of species diversity and identified major changes and threats. Our results listed approximately 17,000 marine species occurring in the Mediterranean Sea. However, our estimates of marine diversity are still incomplete as yet—undescribed species will be added in the future. Diversity for microbes is substantially underestimated, and the deep-sea areas and portions of the southern and eastern region are still poorly known. In addition, the invasion of alien species is a crucial factor that will continue to change the biodiversity of the Mediterranean, mainly in its eastern basin that can spread rapidly northwards and westwards due to the warming of the Mediterranean Sea. Spatial patterns showed a general decrease in biodiversity from northwestern to southeastern regions following a gradient of production, with some exceptions and caution due to gaps in our knowledge of the biota along the southern and eastern rims. Biodiversity was also generally higher in coastal areas and continental shelves, and decreases with depth. Temporal trends indicated that overexploitation and habitat loss have been the main human drivers of historical changes in biodiversity. At present, habitat loss and degradation, followed by fishing impacts, pollution, climate change, eutrophication, and the establishment of alien species are the most important threats and affect the greatest number of taxonomic groups. All these impacts are expected to grow in importance in the future, especially climate change and habitat degradation. The spatial identification of hot spots highlighted the ecological importance of most of the western Mediterranean shelves (and in particular, the Strait of Gibraltar and the adjacent Alboran Sea), western African coast, the Adriatic, and the Aegean Sea, which show high concentrations of endangered, threatened, or vulnerable species. The Levantine Basin, severely impacted by the invasion of species, is endangered as well

    Techniques for Quantifying Phytoplankton Biodiversity

    No full text
    The biodiversity of phytoplankton is a core measurement of the state and activity of marine ecosystems. In the context of historical approaches, we review recent major advances in the technologies that have enabled deeper characterization of the biodiversity of phytoplankton. In particular, high-throughput sequencing of single loci/genes, genomes, and communities (metagenomics) has revealed exceptional phylogenetic and genomic diversity whose breadth is not fully constrained. Other molecular tools-such as fingerprinting, quantitative polymerase chain reaction, and fluorescence in situ hybridization-have provided additional insight into the dynamics of this diversity in the context of environmental variability. Techniques for characterizing the functional diversity of community structure through targeted or untargeted approaches based on RNA or protein have also greatly advanced. A wide range of techniques is now available for characterizing phytoplankton communities, and these tools will continue to advance through ongoing improvements in both technology and data interpretation

    Links between viral and prokaryotic communities throughout the water column in the (sub)tropical Atlantic Ocean

    No full text
    Viral and prokaryotic abundance, production and diversity were determined throughout the water column of the subtropical Atlantic Ocean to assess potential variations in the relation between viruses and prokaryotes. Prokaryotic abundance and heterotrophic activity decreased by one and three orders of magnitude, respectively, from the epi- to the abyssopelagic layer. Although the lytic viral production (VP) decreased with depth, lysogenic VP was variable throughout the water column and did not show any trend with depth. The bacterial, archaeal and viral community composition were depth-stratified as determined by the automated ribosomal intergenic spacer analysis, terminal-restriction fragment length polymorphism and randomly amplified polymorphic DNA-PCR, respectively. Generally, the number of operational taxonomic units (OTUs) did not reveal consistent trends throughout the water column. Viral and prokaryotic abundance were strongly related to heterotrophic prokaryotic production, suggesting similar linkage strength between the viral and prokaryotic communities from the lower epi- to the abyssopelagic layer in the Atlantic Ocean. Strikingly, the prokaryotic and viral parameters exhibited a similar variability throughout the water column down to the abyssopelagic layers, suggesting that the dark ocean is as dynamic a system as is the lower epipelagic layer. It also indicates that viruses are apparently having a similar role for prokaryotic mortality in the dark oceanic realm as in surface waters. The more than twofold increase in bacterial OTUs from 2750m depth to >5000 m depth and the concurrent decrease in viral OTUs, however, suggests that viruses might exhibit a wider host range in deep waters than in surface waters. The ISME Journal (2010) 4, 1431-1442; doi: 10.1038/ISMEJ.2010.65; published online 20 May 201
    corecore