19 research outputs found

    Seismic site effects in a deep alluvial basin: numerical analysis by the boundary element method

    Get PDF
    The main purpose of the paper is the numerical analysis of seismic site effects in Caracas (Venezuela). The analysis is performed considering the boundary element method in the frequency domain. A numerical model including a part of the local topography is considered, it involves a deep alluvial deposit on an elastic bedrock. The amplification of seismic motion (SH-waves, weak motion) is analyzed in terms of level, occurring frequency and location. In this specific site of Caracas, the amplification factor is found to reach a maximum value of 25. Site effects occur in the thickest part of the basin for low frequencies (below 1.0 Hz) and in two intermediate thinner areas for frequencies above 1.0 Hz. The influence of both incidence and shear wave velocities is also investigated. A comparison with microtremor recordings is presented afterwards. The results of both numerical and experimental approaches are in good agreement in terms of fundamental frequencies in the deepest part of the basin. The boundary element method appears to be a reliable and efficient approach for the analysis of seismic site effects

    Numerical analysis of seismic wave amplification in Nice (France) and comparisons with experiments

    Get PDF
    The analysis of site effects is very important since the amplification of seismic motion in some specific areas can be very strong. In this paper, the site considered is located in the centre of Nice on the French Riviera. Site effects are investigated considering a numerical approach (Boundary Element Method) and are compared to experimental results (weak motion and microtremors). The investigation of seismic site effects through numerical approaches is interesting because it shows the dependency of the amplification level on such parameters as wave velocity in surface soil layers, velocity contrast with deep layers, seismic wave type, incidence and damping. In this specific area of Nice, a one-dimensional (1D) analytical analysis of amplification does not give a satisfactory estimation of the maximum reached levels. A boundary element model is then proposed considering different wave types (SH, P, SV) as the seismic loading. The alluvial basin is successively assumed as an isotropic linear elastic medium and an isotropic linear viscoelastic solid (standard solid). The thickness of the surface layer, its mechanical properties, its general shape as well as the seismic wave type involved have a great influence on the maximum amplification and the frequency for which it occurs. For real earthquakes, the numerical results are in very good agreement with experimental measurements for each motion component. Two-dimensional basin effects are found to be very strong and are well reproduced numerically

    Three-dimensional wave scattering by a fixed cylindrical inclusion submerged in a fluid medium

    Get PDF
    This paper presents the solution for a fixed cylindrical irregular cavity of infinite length submerged in a homogeneous fluid medium, and subjected to dilatational point sources placed at some point in the fluid. The solution is first computed for a wide range of frequencies and wavenumbers, which are then used to obtain time-series by means of (fast) inverse Fourier transforms into space-time.http://www.sciencedirect.com/science/article/B6V2N-3XT0C60-4/1/7e38d37dc3f1919ea599793fdacf668

    Use of constant, linear and quadratic boundary elements in 3D wave diffraction analysis

    Get PDF
    The performance of the Boundary Element Method (BEM) depends on the size of the elements and the interpolation function used. However, improvements in accuracy and efficiency obtained with both expansion and grid refinement increases demand on the computational effort. This paper evaluates the performance of constant, linear and quadratic elements in the analysis of the three-dimensional scattering caused by a cylindrical cavity buried in an infinite homogeneous elastic medium subjected to a point load. A circular cylindrical cavity for which analytical solutions are known is used in the simulation analysis. First, the dominant BEM errors are identified in the frequency domain and related to the natural vibration modes of the inclusion. Comparisons of BEM errors are then made for different types of boundary elements, maintaining similar computational costs. Finally, the accuracy of the BEM solution is evaluated when the nodal points are moved inside linear and quadratic discontinuous elements.http://www.sciencedirect.com/science/article/B6V2N-3YN93TX-1/1/28e4a46d3da333118f419ca7b526623

    Scattering of seismic waves generated by an irregular seabed

    Get PDF
    The changes in the seismic response due to the presence of an irregular elastic seabed, and/or the presence of a water-filled inclusion located under the elastic seabed surface, in the presence of a dilatational spatially harmonic line source, is assessed. The seabed surface deformations and the water-filled inclusions are bi-dimensional.http://www.sciencedirect.com/science/article/B6V28-4CSG33P-4/1/b8d58cbd5f23923683dee026dcc3e43

    3D seismic response of a limited valley via BEM using 2.5D analytical Green's functions for an infinite free-rigid layer

    Get PDF
    This paper presents analytical solutions for computing the 3D displacements in a flat solid elastic stratum bounded by a rigid base, when it is subjected to spatially sinusoidal harmonic line loads. These functions are also used as Greens functions in a boundary element method code that simulates the seismic wave propagation in a confined or semi-confined 2D valley, avoiding the discretization of the free and rigid horizontal boundaries.http://www.sciencedirect.com/science/article/B6V4Y-47609FW-1/1/91431ac76dd79dd18d4629d2efeb569
    corecore