292 research outputs found
Symmetry, bifurcation and stacking of the central configurations of the planar 1+4 body problem
In this work we are interested in the central configurations of the planar
1+4 body problem where the satellites have different infinitesimal masses and
two of them are diametrically opposite in a circle. We can think this problem
as a stacked central configuration too. We show that the configuration are
necessarily symmetric and the other sattelites has the same mass. Moreover we
proved that the number of central configuration in this case is in general one,
two or three and in the special case where the satellites diametrically
opposite have the same mass we proved that the number of central configuration
is one or two saying the exact value of the ratio of the masses that provides
this bifurcation.Comment: 9 pages, 2 figures. arXiv admin note: text overlap with
arXiv:1103.627
Chaos around a H\'enon-Heiles-inspired exact perturbation of a black hole
A solution of the Einstein's equations that represents the superposition of a
Schwarszchild black hole with both quadrupolar and octopolar terms describing a
halo is exhibited. We show that this solution, in the Newtonian limit, is an
analog to the well known H\'enon-Heiles potential. The integrability of orbits
of test particles moving around a black hole representing the galactic center
is studied and bounded zones of chaotic behavior are found.Comment: 7 pages Revte
Crossover from adiabatic to sudden interaction quenches in the Hubbard model: Prethermalization and nonequilibrium dynamics
The recent experimental implementation of condensed matter models in optical
lattices has motivated research on their nonequilibrium behavior. Predictions
on the dynamics of superconductors following a sudden quench of the pairing
interaction have been made based on the effective BCS Hamiltonian; however,
their experimental verification requires the preparation of a suitable excited
state of the Hubbard model along a twofold constraint: (i) a sufficiently
nonadiabatic ramping scheme is essential to excite the nonequilibrium dynamics,
and (ii) overheating beyond the critical temperature of superconductivity must
be avoided. For commonly discussed interaction ramps there is no clear
separation of the corresponding energy scales. Here we show that the matching
of both conditions is simplified by the intrinsic relaxation behavior of
ultracold fermionic systems: For the particular example of a linear ramp we
examine the transient regime of prethermalization [M. Moeckel and S. Kehrein,
Phys. Rev. Lett. 100, 175702 (2008)] under the crossover from sudden to
adiabatic switching using Keldysh perturbation theory. A real-time analysis of
the momentum distribution exhibits a temporal separation of an early energy
relaxation and its later thermalization by scattering events. For long but
finite ramping times this separation can be large. In the prethermalization
regime the momentum distribution resembles a zero temperature Fermi liquid as
the energy inserted by the ramp remains located in high energy modes. Thus
ultracold fermions prove robust to heating which simplifies the observation of
nonequilibrium BCS dynamics in optical lattices.Comment: 27 pages, 8 figures Second version with small modifications in
section
Large normally hyperbolic cylinders in a priori stable Hamiltonian systems
We prove the existence of normally hyperbolic invariant cylinders in nearly
integrable hamiltonian systems
Stellar Encounters with Massive Star-Disk Systems
The dense, clustered environment in which massive stars form can lead to
interactions with neighboring stars. It has been hypothesized that collisions
and mergers may contribute to the growth of the most massive stars. In this
paper we extend the study of star-disk interactions to explore encounters
between a massive protostar and a less massive cluster sibling using the
publicly available SPH code GADGET-2. Collisions do not occur in the parameter
space studied, but the end state of many encounters is an eccentric binary with
a semi-major axis ~ 100 AU. Disk material is sometimes captured by the
impactor. Most encounters result in disruption and destruction of the initial
disk, and periodic torquing of the remnant disk. We consider the effect of the
changing orientation of the disk on an accretion driven jet, and the evolution
of the systems in the presence of on-going accretion from the parent core.Comment: 11 pages, 10 figures, accepted to Ap
Straight Line Orbits in Hamiltonian Flows
We investigate periodic straight-line orbits (SLO) in Hamiltonian force
fields using both direct and inverse methods. A general theorem is proven for
natural Hamiltonians quadratic in the momenta in arbitrary dimension and
specialized to two and three dimension. Next we specialize to homogeneous
potentials and their superpositions, including the familiar H\'enon-Heiles
problem. It is shown that SLO's can exist for arbitrary finite superpositions
of -forms. The results are applied to a family of generalized H\'enon-Heiles
potentials having discrete rotational symmetry. SLO's are also found for
superpositions of these potentials.Comment: laTeX with 6 figure
A Multi-Epoch Study of the Radio Continuum Emission of Orion Source I: Constraints on the Disk Evolution of a Massive YSO and the Dynamical History of Orion BN/KL
We present new 7mm continuum observations of Orion BN/KL with the VLA. We
resolve the emission from the protostar radio Source I and BN at several
epochs. Source I is highly elongated NW-SE, and remarkably stable in flux
density, position angle, and overall morphology over nearly a decade. This
favors the extended emission component arising from an ionized disk rather than
a jet. We have measured the proper motions of Source I and BN for the first
time at 43 GHz. We confirm that both sources are moving at high speed (12 and
26 km/s, respectively) approximately in opposite directions, as previously
inferred from measurements at lower frequencies. We discuss dynamical scenarios
that can explain the large motions of both BN and Source I and the presence of
disks around both. Our new measurements support the hypothesis that a close
(~50 AU) dynamical interaction occurred around 500 years ago between Source I
and BN as proposed by Gomez et al. From the dynamics of encounter we argue that
Source I today is likely to be a binary with a total mass on the order of 20
Msun, and that it probably existed as a softer binary before the close
encounter. This enables preservation of the original accretion disk, though
truncated to its present radius of ~50 AU. N-body numerical simulations show
that the dynamical interaction between a binary of 20 Msun total mass (I) and a
single star of 10 Msun mass (BN) may lead to the ejection of both and binary
hardening. The gravitational energy released in the process would be large
enough to power the wide-angle flow traced by H2 and CO emission in the BN/KL
nebula. Assuming the proposed dynamical history is correct, the smaller mass
for Source I recently estimated from SiO maser dynamics (>7 Msun) by Matthews
et al., suggests that non-gravitational forces (e.g. magnetic) must play an
important role in the circumstellar gas dynamics.Comment: 17 pages, 7 figures, 4 tables, accepted by Ap
Action minimizing orbits in the n-body problem with simple choreography constraint
In 1999 Chenciner and Montgomery found a remarkably simple choreographic
motion for the planar 3-body problem (see \cite{CM}). In this solution 3 equal
masses travel on a eight shaped planar curve; this orbit is obtained minimizing
the action integral on the set of simple planar choreographies with some
special symmetry constraints. In this work our aim is to study the problem of
masses moving in \RR^d under an attractive force generated by a potential
of the kind , , with the only constraint to be a simple
choreography: if are the orbits then we impose the
existence of x \in H^1_{2 \pi}(\RR,\RR^d) such that q_i(t)=x(t+(i-1) \tau),
i=1,...,n, t \in \RR, where . In this setting, we first
prove that for every d,n \in \NN and , the lagrangian action
attains its absolute minimum on the planar circle. Next we deal with the
problem in a rotating frame and we show a reacher phenomenology: indeed while
for some values of the angular velocity minimizers are still circles, for
others the minima of the action are not anymore rigid motions.Comment: 24 pages; 4 figures; submitted to Nonlinearit
The Effects of Clumps in Explaining X-ray Emission Lines from Hot Stars
It is now well established that stellar winds of hot stars are fragmentary
and that the X-ray emission from stellar winds has a strong contribution from
shocks in winds. Chandra high spectral resolution observations of line profiles
of O and B stars have shown numerous properties that had not been expected.
Here we suggest explanations by considering the X-rays as arising from bow
shocks that occur where the stellar wind impacts on spherical clumps in the
winds. We use an accurate and stable numerical hydrodynamical code to obtain
steady-state physical conditions for the temperature and density structure in a
bow shock. We use these solutions plus analytic approximations to interpret
some major X-ray features: the simple power-law distribution of the observed
emission measure derived from many hot star X-ray spectra and the wide range of
ionization stages that appear to be present in X-ray sources throughout the
winds. Also associated with the adiabatic cooling of the gas around a clump is
a significant transverse velocity for the hot plasma flow around the clumps,
and this can help to understand anomalies associated with observed line widths,
and the differences in widths seen in stars with high and low mass-loss rates.
The differences between bow shocks and the planar shocks that are often used
for hot stars are discussed. We introduce an ``on the shock'' (OTSh)
approximation that is useful for interpreting the X-rays and the consequences
of clumps in hot star winds and elsewhere in astronomy.Comment: to appear in the Astrophysical Journa
Many-body localization and thermalization in the full probability distribution function of observables
We investigate the relation between thermalization following a quantum quench
and many-body localization in quasiparticle space in terms of the long-time
full distribution function of physical observables. In particular, expanding on
our recent work [E. Canovi {\em et al.}, Phys. Rev. B {\bf 83}, 094431 (2011)],
we focus on the long-time behavior of an integrable XXZ chain subject to an
integrability-breaking perturbation. After a characterization of the breaking
of integrability and the associated localization/delocalization transition
using the level spacing statistics and the properties of the eigenstates, we
study the effect of integrability-breaking on the asymptotic state after a
quantum quench of the anisotropy parameter, looking at the behavior of the full
probability distribution of the transverse and longitudinal magnetization of a
subsystem. We compare the resulting distributions with those obtained in
equilibrium at an effective temperature set by the initial energy. We find
that, while the long time distribution functions appear to always agree {\it
qualitatively} with the equilibrium ones, {\it quantitative} agreement is
obtained only when integrability is fully broken and the relevant eigenstates
are diffusive in quasi-particle space.Comment: 18 pages, 11 figure
- …