306 research outputs found
Recommended from our members
Direct Numerical Simulations of Turbulent Flow Over Various Riblet Shapes in Minimal-Span Channels
Riblets reduce skin-friction drag until their viscous-scaled size becomes large enough for turbulence to approach the wall, leading to the breakdown of drag-reduction. In order to investigate inertial-flow mechanisms that are responsible for the breakdown, we employ the minimal-span channel concept for cost-efficient direct numerical simulation (DNS) of rough-wall flows (MacDonald et al. in J Fluid Mech 816: 5–42, 2017). This allows us to investigate six different riblet shapes and various viscous-scaled sizes for a total of 21 configurations. We verify that the small numerical domains capture all relevant physics by varying the box size and by comparing to reference data from full-span channel flow. Specifically, we find that, close to the wall in the spectral region occupied by drag-increasing Kelvin–Helmholtz rollers (García-Mayoral and Jiménez in J Fluid Mech 678: 317–347, 2011), the energy-difference relative to smooth-wall flow is not affected by the narrow domain, even though these structures have large spanwise extents. This allows us to evaluate the influence of the Kelvin–Helmholtz instability by comparing fluctuations of wall-normal and streamwise velocity, pressure and a passive scalar over riblets of different shapes and viscous-scaled sizes to those over a smooth wall. We observe that triangular riblets with a tip angle α= 30 ∘ and blades appear to support the instability, whereas triangular riblets with α= 60 ∘–90 ∘ and trapezoidal riblets with α= 30 ∘ show little to no evidence of Kelvin–Helmholtz rollers.Australian Research Council, Discovery Project DP17010259
Relationship between educational and occupational levels, and Chronic Kidney Disease in a multi-ethnic sample- The HELIUS study
Ethnic minority groups in high-income countries are disproportionately affected by Chronic Kidney Disease (CKD) for reasons that are unclear. We assessed the association of educational and occupational levels with CKD in a multi-ethnic population. Furthermore, we assessed to what extent ethnic inequalities in the prevalence of CKD were accounted for by educational and occupational levels.Cross-sectional analysis of baseline data from the Healthy Life in an Urban Setting (HELIUS) study of 21,433 adults (4,525 Dutch, 3,027 South-Asian Surinamese, 4,105 African Surinamese, 2,314 Ghanaians, 3,579 Turks, and 3,883 Moroccans) aged 18 to 70 years living in Amsterdam, the Netherlands. Three CKD outcomes were considered using the 2012 KDIGO (Kidney Disease: Improving Global Outcomes) severity of CKD classification. Comparisons between educational and occupational levels were made using logistic regression analyses.After adjustment for sex and age, low-level and middle-level education were significantly associated with higher odds of high to very high-risk of CKD in Dutch (Odds Ratio (OR) 2.10, 95% C.I., 1.37-2.95; OR 1.55, 95% C.I., 1.03-2.34). Among ethnic minority groups, low-level education was significantly associated with higher odds of high to very-high-risk CKD but only in South-Asian Surinamese (OR 1.58, 95% C.I., 1.06-2.34). Similar results were found for the occupational level in relation to CKD risk.The lower educational and occupational levels of ethnic minority groups partly accounted for the observed ethnic inequalities in CKD. Reducing CKD risk in ethnic minority populations with low educational and occupational levels may help to reduce ethnic inequalities in CKD and its related complications
A human XRCC4–XLF complex bridges DNA
DNA double-strand breaks pose a significant threat to cell survival and must be repaired. In higher eukaryotes, such damage is repaired efficiently by non-homologous end joining (NHEJ). Within this pathway, XRCC4 and XLF fulfill key roles required for end joining. Using DNA-binding and -bridging assays, combined with direct visualization, we present evidence for how XRCC4–XLF complexes robustly bridge DNA molecules. This unanticipated, DNA Ligase IV-independent bridging activity by XRCC4–XLF suggests an early role for this complex during end joining, in addition to its more well-established later functions. Mutational analysis of the XRCC4–XLF C-terminal tail regions further identifies specialized functions in complex formation and interaction with DNA and DNA Ligase IV. Based on these data and the crystal structure of an extended protein filament of XRCC4–XLF at 3.94 Å, a model for XRCC4–XLF complex function in NHEJ is presented
Enantiopure Dinaphtho[2,3-b:2,3-f]thieno[3,2-b]thiophenes: Reaching High Magnetoresistance Effect in OFETs
Chiral molecules are known to behave as spin filters due to the chiral induced spin selectivity (CISS) effect. Chirality can be implemented in molecular semiconductors in order to study the role of the CISS effect in charge transport and to find new materials for spintronic applications. In this study, the design and synthesis of a new class of enantiopure chiral organic semiconductors based on the well-known dinaphtho[2,3-b:2,3-f]thieno[3,2-b]thiophene (DNTT) core functionalized with chiral alkyl side chains is presented. When introduced in an organic field-effect transistor (OFET) with magnetic contacts, the two enantiomers, (R)-DNTT and (S)-DNTT, show an opposite behavior with respect to the relative direction of the magnetization of the contacts, oriented by an external magnetic field. Each enantiomer displays an unexpectedly high magnetoresistance over one preferred orientation of the spin current injected from the magnetic contacts. The result is the first reported OFET in which the current can be switched on and off upon inversion of the direction of the applied external magnetic field. This work contributes to the general understanding of the CISS effect and opens new avenues for the introduction of organic materials in spintronic devices
Determination of the (3x3)-Sn/Ge(111) structure by photoelectron diffraction
At a coverage of about 1/3 monolayer, Sn deposited on Ge(111) below 550 forms
a metastable (sqrt3 x sqrt3)R30 phase. This phase continuously and reversibly
transforms into a (3x3) one, upon cooling below 200 K. The photoemission
spectra of the Sn 4d electrons from the (3x3)-Sn/Ge(111) surface present two
components which are attributed to inequivalent Sn atoms in T4 bonding sites.
This structure has been explored by photoelectron diffraction experiments
performed at the ALOISA beamline of the Elettra storage ring in Trieste
(Italy). The modulation of the intensities of the two Sn components, caused by
the backscattering of the underneath Ge atoms, has been measured as a function
of the emission angle at fixed kinetic energies and viceversa. The bond angle
between Sn and its nearest neighbour atoms in the first Ge layer (Sn-Ge1) has
been measured by taking polar scans along the main symmetry directions and it
was found almost equivalent for the two components. The corresponding bond
lengths are also quite similar, as obtained by studying the dependence on the
photoelectron kinetic energy, while keeping the photon polarization and the
collection direction parallel to the Sn-Ge1 bond orientation (bond emission). A
clear difference between the two bonding sites is observed when studying the
energy dependence at normal emission, where the sensitivity to the Sn height
above the Ge atom in the second layer is enhanced. This vertical distance is
found to be 0.3 Angstroms larger for one Sn atom out of the three contained in
the lattice unit cell. The (3x3)-Sn/Ge(111) is thus characterized by a
structure where the Sn atom and its three nearest neighbour Ge atoms form a
rather rigid unit that presents a strong vertical distortion with respect to
the underneath atom of the second Ge layer.Comment: 10 pages with 9 figures, added reference
Yeast two-hybrid junk sequences contain selected linear motifs
Yeast two-hybrid (Y2H) screenings result in identification of many out-of-frame (OOF) clones that code for short (2-100 amino acids) peptides with no sequence homology to known proteins. We hypothesize that these peptides can reveal common short linear motifs (SLiMs) responsible for their selection. We present a new protocol to address this issue, using an existing SLIM detector (TEIRESIAS) as a base method, and applying filters derived from a mathematical model of SLiM selection in OOF clones. The model allows for initial analysis of likely presence of SLiM(s) in a collection of OOF sequences, assisting investigators with the decision of whether to invest resources in further analysis. If SLiM presence is detected, it estimates the length and number of amino acid residues involved in binding specificity and the amount of noise in the Y2H screen. We demonstrate that our model can double the prediction sensitivity of TEIRESIAS and improve its specificity from 0 to 1.0 on simulated data and apply the model to seven sets of experimentally derived OOF clones. Finally, we experimentally validate one SLiM found by our method, demonstrating its utility
Conformational changes in CLIP-170 regulate its binding to microtubules and dynactin localization
Cytoplasmic linker protein (CLIP)-170, CLIP-115, and the dynactin subunit p150Glued are structurally related proteins, which associate specifically with the ends of growing microtubules (MTs). Here, we show that down-regulation of CLIP-170 by RNA interference results in a strongly reduced accumulation of dynactin at the MT tips. The NH2 terminus of p150Glued binds directly to the COOH terminus of CLIP-170 through its second metal-binding motif. p150Glued and LIS1, a dynein-associating protein, compete for the interaction with the CLIP-170 COOH terminus, suggesting that LIS1 can act to release dynactin from the MT tips. We also show that the NH2-terminal part of CLIP-170 itself associates with the CLIP-170 COOH terminus through its first metal-binding motif. By using scanning force microscopy and fluorescence resonance energy transfer-based experiments we provide evidence for an intramolecular interaction between the NH2 and COOH termini of CLIP-170. This interaction interferes with the binding of the CLIP-170 to MTs. We propose that conformational changes in CLIP-170 are important for binding to dynactin, LIS1, and the MT tips
Tunneling Spectra of Individual Magnetic Endofullerene Molecules
The manipulation of single magnetic molecules may enable new strategies for
high-density information storage and quantum-state control. However, progress
in these areas depends on developing techniques for addressing individual
molecules and controlling their spin. Here we report success in making
electrical contact to individual magnetic N@C60 molecules and measuring spin
excitations in their electron tunneling spectra. We verify that the molecules
remain magnetic by observing a transition as a function of magnetic field which
changes the spin quantum number and also the existence of nonequilibrium
tunneling originating from low-energy excited states. From the tunneling
spectra, we identify the charge and spin states of the molecule. The measured
spectra can be reproduced theoretically by accounting for the exchange
interaction between the nitrogen spin and electron(s) on the C60 cage.Comment: 7 pages, 4 figures. Typeset in LaTeX, updated text of previous
versio
Prato: The Social Construction of an Industrial City Facing Processes of Cultural Hybridization
This chapter deals with a widely studied case, that is, Prato, a middle-sized city with rooted industrial traditions, in the Centre of Italy. Prato is a textile industrial district embedded in the so-called Third Italy—an area characterized by the presence of small firms spread throughout the territory, linked together in supply and subcontracting relationships—which, in the last twenty years, has undergone a profound transformation as a consequence of the crisis of textile and immigration, leading to the formation of a large Chinese community. The related changes brought with them problems of social cohesion and sustainable development. The authors address these issues by analyzing both academic and public discourses on Prato. Their basic idea is that common stereotypes act as drivers of a public discourse that prevents the city to re-negotiate its identity. The analysis concludes that different forms of hybridization—particularly cultural hybridization—are occurring, which would need further investigations
- …