542 research outputs found

    Turbulence and secondary motions in square duct flow

    Full text link
    We study turbulent flows in pressure-driven ducts with square cross-section through direct numerical simulation in a wide enough range of Reynolds number to reach flow conditions which are representative of fully developed turbulence. Numerical simulations are carried out over extremely long integration times to get adequate convergence of the flow statistics, and specifically high-fidelity representation of the secondary motions which arise. The intensity of the latter is found to be in the order of 1-2% of the bulk velocity, and unaffected by Reynolds number variations. The smallness of the mean convection terms in the streamwise vorticity equation points to a simple characterization of the secondary flows, which in the asymptotic high-Re regime are found to be approximated with good accuracy by eigenfunctions of the Laplace operator. Despite their effect of redistributing the wall shear stress along the duct perimeter, we find that secondary motions do not have large influence on the mean velocity field, which can be characterized with good accuracy as that resulting from the concurrent effect of four independent flat walls, each controlling a quarter of the flow domain. As a consequence, we find that parametrizations based on the hydraulic diameter concept, and modifications thereof, are successful in predicting the duct friction coefficient

    Direct numerical simulation of supersonic pipe flow at moderate Reynolds number

    Get PDF
    We study compressible turbulent flow in a circular pipe at computationally high Reynolds number. Classical related issues are addressed and discussed in light of the DNS data, including validity of compressibility transformations, velocity/temperature relations, passive scalar statistics, and size of turbulent eddies. Regarding velocity statistics, we find that Huang's transformation yields excellent universality of the scaled Reynolds stresses distributions, whereas the transformation proposed by Trettel and Larsson (2016) yields better representation of the effects of strong variation of density and viscosity occurring in the buffer layer on the mean velocity distribution. A clear logarithmic layer is recovered in terms of transformed velocity and wall distance coordinates at the higher Reynolds number under scrutiny (Re τ ≈ 1000), whereas the core part of the flow is found to be characterized by a universal parabolic velocity profile. Based on formal similarity between the streamwise velocity and the passive scalar transport equations, we further propose an extension of the above compressibility transformations to also achieve universality of passive scalar statistics. Analysis of the velocity/temperature relationship provides evidence for quadratic dependence which is very well approximated by the thermal analogy proposed by Zhang et al. (2014). The azimuthal velocity and scalar spectra show an organization very similar to canonical incompressible flow, with a bump-shaped distribution across the flow scales, whose peak increases with the wall distance. We find that the size growth effect is well accounted for through an effective length scale accounting for the local friction velocity and for the local mean shear

    Direct numerical simulation of developed compressible flow in square ducts

    Get PDF
    We carry out direct numerical simulation of compressible square duct flow in the range of bulk Mach numbers M b =0.2−3, and up to friction Reynolds number Re τ =500. The effects of flow compressibility on the secondary motions are found to be negligible, with the typical Mach number associated with the cross-stream flow always less than 0.1. As in the incompressible case, we find that the wall law for the mean streamwise velocity applies with good approximation with respect to the nearest wall, upon suitable compressibility transformation. The same conclusion also applies to a passive scalar field, whereas the mean temperature does not exhibit inertial layers because of nonuniformity of the aerodynamic heating. We further find that the same temperature/velocity relation that holds for planar channels is applicable with good approximation for square ducts, and develop a similar relation between temperature and passive scalars

    Direct numerical simulation of supersonic turbulent flows over rough surfaces

    Get PDF
    We perform direct numerical simulation of supersonic turbulent channel flow over cubical roughness elements, spanning bulk Mach numbers -, both in the transitional and fully rough regime. We propose a novel definition of roughness Reynolds number which is able to account for the viscosity variations at the roughness crest and should be used to compare rough-wall flows across different Mach numbers. As in the incompressible flow regime, the mean velocity profile shows a downward shift with respect to the baseline smooth wall cases, however, the magnitude of this velocity deficit is largely affected by the Mach number. Compressibility transformations are able to account for this effect, and data show a very good agreement with the incompressible fully rough asymptote, when the relevant roughness Reynolds number is used. Velocity statistics present outer layer similarity with the equivalent smooth wall cases, however, this does not hold for the thermal field, which is substantially affected by the roughness, even in the channel core. We show that this is a direct consequence of the quadratic temperature-velocity relation which is also valid for rough walls. Analysis of the heat transfer shows that the relative drag increase is always larger than the relative heat transfer enhancement, however, increasing the Mach number brings data closer to the Reynolds analogy line due to the rising relevance of the aerodynamic heating

    STREAmS: A high-fidelity accelerated solver for direct numerical simulation of compressible turbulent flows

    Get PDF
    We present STREAmS, an in-house high-fidelity solver for direct numerical simulations (DNS) of canonical compressible wall-bounded flows, namely turbulent plane channel, zero-pressure gradient turbulent boundary layer and supersonic oblique shock-wave/boundary layer interaction. The solver incorporates state-of-the-art numerical algorithms, specifically designed to cope with the challenging problems associated with the solution of high-speed turbulent flows and can be used across a wide range of Mach numbers, extending from the low subsonic up to the hypersonic regime. From the computational viewpoint, STREAmS is oriented to modern HPC platforms thanks to MPI parallelization and the ability to run on multi-GPU architectures. This paper discusses the main implementation strategies, with particular reference to the CUDA paradigm, the management of a single code for traditional and multi-GPU architectures, and the optimization process to take advantage of the latest generation of NVIDIA GPUs. Performance measurements show that single-GPU optimization more than halves the computing time as compared to the baseline version. At the same time, the asynchronous patterns implemented in STREAmS for MPI communications guarantee very good parallel performance especially in the weak scaling spirit, with efficiency exceeding 97% on 1024 GPUs. For overall evaluation of STREAmS with respect to other compressible solvers, comparison with a recent GPU-enabled community solver is presented. It turns out that, although STREAmS is much more limited in terms of flow configurations that can be addressed, the advantage in terms of accuracy, computing time and memory occupation is substantial, which makes it an ideal candidate for large-scale simulations of high-Reynolds number, compressible wall-bounded turbulent flows. The solver is released open source under GPLv3 license. Program summary: Program Title: STREAmS CPC Library link to program files: https://doi.org/10.17632/hdcgjpzr3y.1 Developer's repository link: https://github.com/matteobernardini/STREAmS Code Ocean capsule: https://codeocean.com/capsule/8931507/tree/v2 Licensing provisions: GPLv3 Programming language: Fortran 90, CUDA Fortran, MPI Nature of problem: Solving the three-dimensional compressible Navier–Stokes equations for low and high Mach regimes in a Cartesian domain configured for channel, boundary layer or shock-boundary layer interaction flows. Solution method: The convective terms are discretized using a hybrid energy-conservative shock-capturing scheme in locally conservative form. Shock-capturing capabilities rely on the use of Lax–Friedrichs flux vector splitting and weighted essentially non-oscillatory (WENO) reconstruction. The system is advanced in time using a three-stage, third-order RK scheme. Two-dimensional pencil distributed MPI parallelization is implemented alongside different patterns of GPU (CUDA Fortran) accelerated routines

    Proximity-induced ferromagnetism and chemical reactivity in few-layer VSe2 heterostructures

    Get PDF
    Among transition-metal dichalcogenides, mono and few-layers thick VSe2 has gained much recent attention following claims of intrinsic room-temperature ferromagnetism in this system, which have nonetheless proved controversial. Here, we address the magnetic and chemical properties of Fe/VSe2 heterostructure by combining element sensitive x-ray absorption spectroscopy and photoemission spectroscopy. Our x-ray magnetic circular dichroism results confirm recent findings that both native mono/few-layer and bulk VSe2 do not show intrinsic ferromagnetic ordering. Nonetheless, we find that ferromagnetism can be induced, even at room temperature, after coupling with a Fe thin film layer, with antiparallel alignment of the moment on the V with respect to Fe. We further consider the chemical reactivity at the Fe/VSe2 interface and its relation with interfacial magnetic coupling

    2D-DIGE analysis of ovarian cancer cell responses to cytotoxic gold compounds

    Get PDF
    Cytotoxic gold compounds hold today great promise as new pharmacological agents for treatment of human ovarian carcinoma; yet, their mode of action is still largely unknown. To shed light on the underlying molecular mechanisms, we performed 2D-DIGE analysis to identify differential protein expression in a cisplatin-sensitive human ovarian cancer cell line (A2780/S) following treatment with two representative gold(III) complexes that are known to be potent antiproliferative agents, namely AuL12 and Au2Phen. Software analysis using DeCyder was performed and few differentially expressed protein spots were visualized between the three examined settings after 24h exposure to the cytotoxic compounds, implying that cellular damage at least during the early phases of exposure is quite limited and selective reflecting the attempts of the cell to repair damage and to survive the insult. The potential of novel proteomic methods to disclose mechanistic details of cytotoxic metallodrugs is herein further highlighted. Different patterns of proteomic changes were highlighted for the two metallodrugs with only a few perturbed protein spots in common. Using MALDI-TOF MS and ESI-Ion trap MS/MS, several differentially expressed proteins were identified. Two of these were validated by western blotting: Ubiquilin-1, responsible for inhibiting degradation of protein such as p53 and NAP1L1, a candidate marker identified in primary tumors. In conclusion, we performed a comprehensive analysis of proteins regulated by AuL12 and Au2Phen, providing a useful insight into their mechanisms of action
    • …
    corecore