
ar
X

iv
:2

00
4.

02
27

6v
1

 [
ph

ys
ic

s.
co

m
p-

ph
]

 5
 A

pr
 2

02
0

STREAmS: a high-fidelity accelerated solver for direct numerical
simulation of compressible turbulent flows

Matteo Bernardini1, Davide Modesti2, Francesco Salvadore3, and Sergio Pirozzoli1

1Dipartimento di Ingegneria Meccanica e Aerospaziale, Sapienza Università di Roma, via Eudossiana 18, 00184 Roma, Italia
2Aerodynamics Group, Faculty of Aerospace Engineering, Kluyverweg 2, 2629 HS Delft, The Netherlands
3HPC Department, Cineca, Rome office, via dei Tizii 6/B, 00185 Roma, Italia

A R T I C L E I N F O

Keywords:
GPUs
CUDA
compressible flows
Wall turbulence
Direct Numerical Simulation
open source

A B S T R A C T

We present STREAmS, an in-house high-fidelity solver for large-scale, massively parallel direct nu-
merical simulations (DNS) of compressible turbulent flows on graphical processing units (GPUs).
STREAmS is written in the Fortran 90 language and it is tailored to carry out DNS of canonical
compressible wall-bounded flows, namely turbulent plane channel, zero-pressure gradient turbulent
boundary layer and supersonic oblique shock-wave/boundary layer interactions. The solver incorpo-
rates state-of-the-art numerical algorithms, specifically designed to cope with the challenging prob-
lems associated with the solution of high-speed turbulent flows and can be used across a wide range
of Mach numbers, extending from the low subsonic up to the hypersonic regime. The use of cuf auto-
matic kernels allowed an easy and efficient porting on the GPU architecture minimizing the changes
to the original CPU code, which is also maintained. We discuss a memory allocation strategy based
on duplicated arrays for host and device which carefully minimizes the memory usage making the
solver suitable for large scale computations on the latest GPU cards. Comparison between different
CPUs and GPUs architectures strongly favor the latter, and executing the solver on a single NVIDIA
Tesla P100 corresponds to using approximately 330 Intel Knights Landing CPU cores. STREAmS
shows very good strong scalability and essentially ideal weak scalability up to 2048 GPUs, paving the
way to simulations in the genuine high-Reynolds number regime, possibly at friction Reynolds num-
ber Re� > 104 . The solver is released open source under GPLv3 license and is available at https://
github.com/matteobernardini/STREAmS.

1. Introduction

Compressible flows are ubiquitous in aerospace applica-
tions and in recent years there has been a renewed interest in
the field, owing to the rising investments in high-speed flight
and space exploration. These technological challenges call
attention to high-fidelity numerical methods for compress-
ible wall-bounded flows which have proved to be a valuable
tool to unveil the complexity of these flows.

The flow physics of compressible wall-bounded tur-
bulence is undoubtedly richer than that of incompressible
flows. The hyperbolic nature of the equations allows for the
presence of propagating disturbances and discontinuities
such as shock waves, which interact with the underlying
turbulence, leading to flow phenomena that are absent in
the incompressible case. This additional complexity has
affected and slowed down the development of numeri-
cal methods for compressible flows, as compared to the
incompressible ones. Baseline numerical algorithms for
direct numerical simulation (DNS) of incompressible flows
were mainly developed between the sixties and the eight-
ies (1,2,3,4), and basically settled since then. The reliability
of these algorithms and the advent of the open-source soft-
ware promoted the development of several incompressible
open-source solvers for fluid dynamics, both multi-purpose
solvers as OpenFOAM (5), Nek5000 (6) and Nektar++ (7)

and academic solvers as AFiD (8) and CaNS (9). These
solvers are based on central processing units (CPUs) and
message passing interface (MPI) parallelization, which has
been the standard approach in high-performance computing

(HPC) (10) in the past twenty years. However, in the race
towards exascale computing, the HPC architectures are
showing consistent trend towards the use of graphical
processing units (GPUs). In the last decade, GPUs have
become the favorite solution to achieve accelerated cutting-
edge performance with high energy efficiency. In particular,
in the latest Top500 survey (11), which reports the ranking of
the most powerful 500 machines worldwide, 136 machines
are NVIDIA GPU-Accelerated (12) for a total of about
40% of the total power supplied. In addition, NVIDIA
GPUs power 90% of the top 30 supercomputers on the
Green500 (13), a list of HPC systems with high performance
and improved energy efficiency. The incompressible DNS
community has already benefited from improved computa-
tional performance of GPUs, with two available in-house
solvers AFiD-GPU (14) and CaNS-GPU (15).

Numerical algorithms for compressible flow DNS are
less standardized then the incompressible ones, as several
formulations of the underlying equations are possible (16,17),
each proving numerical advantages depending on the
flow physics involved. For this reason fewer CPUs-based
open-source compressible flow solvers are available,
compared to the incompressible case. Examples include
popular multi-purpose open-source packages (5,18,19,7) and
OpenSBLI (20), a Python framework for the automated
derivation of finite differences solvers both for CPUs and
GPUs architectures. Another option is the use of the recent
programming paradigm Legion (21) which allows to use
the same solver on different HPC architectures (including

: Preprint submitted to Elsevier Page 1 of 11

http://arxiv.org/abs/2004.02276v1
https://github.com/matteobernardini/STREAmS
https://github.com/matteobernardini/STREAmS

STREAmS-GPU

GPUs), without requiring extensive code restructuring. A
recent example of compressible flow solver using Legion
is HTR (22), designed for hypersonic reacting flows. To our
best knowledge, no open-source GPUs-based compressible
solver is currently available, and the aim of this work is
to fill this gap by adapting our CPUs-based compressible
finite differences flow solver to run on multi-GPU clus-
ters. The CPUs solver stems from 20 years experience of
our group on compressible wall-bounded flows and has
been used to carry out several seminal DNS studies of
canonical flows including supersonic boundary layer (23,24),
shock/boundary layer interaction (SBLI) (25,26), supersonic
roughness-induced transition (27) and supersonic internal
flows (28,29,30). The solver was already ported to compute
unified device architecture (CUDA) (31) for the previ-
ous generation of GPUs, which required extensive code
re-structuring and optimization.

In this work we present STREAmS (Supersonic TuR-
bulEnt Accelerated navier stokes Solver) a CUDA Fortran
version of our compressible flow solver developed and op-
timized for the latest generation of GPU clusters. We focus
on three canonical wall-bounded turbulent flows, namely the
supersonic plane channel, the zero-pressure-gradientbound-
ary layer developing over a flat plate and the oblique shock
wave/turbulent boundary layer interaction. We discuss the
CUDA implementation strategy and we compare the com-
putational performance with the standard CPU implemen-
tation and with the incompressible solvers AFiD-GPU and
CaNS-GPU.

2. Methodology

STREAmS solves the fully compressible Navier-Stokes
equations for a perfect heat-conducting gas

)�

)t
+

)�ui
)xi

= 0, (1a)

)�ui
)t

+
)�uiuj

)xj
= −

)p

)xi
+

)�ij

)xj
+ f�i1, (1b)

)�E

)t
+

)�ujH

)xj
= −

)qj

)xj
+

)�ijui

)xj
+ fu1, (1c)

where ui, i = 1, 2, 3, is the velocity component in the i-th
direction, � the density, p the pressure, E = cvT + uiui∕2
the total energy per unit mass, and H = E + p∕� is the total
enthalpy. The components of the heat flux vector qj and of
the viscous stress tensor �ij are

�ij = �

(
)ui
)xj

+
)uj

)xi
−

2

3

)uk
)xk

�ij

)
, (2)

qj = −k
)T

)xj
, (3)

where the dependence of the viscosity coefficient on tem-
perature is accounted for through Sutherland’s law and k =

cp�∕Pr is the thermal conductivity, with Pr = 0.72. The
forcing term f in equation (1b) is added in the plane channel

i i + 1i − 1 i + 2 i + li − l

i + 1∕2

Figure 1: Sketch of the computational stencil in one space
direction.

flow simulations and is evaluated at each time step in order
to discretely enforce constant mass-flow-rate in time. The
corresponding power spent is added to the right-hand-side
of the total energy equation.

2.1. Spatial discretization
The convective terms in the Navier–Stokes equations

are discretized using a hybrid energy-conservative shock-
capturing scheme in locally conservative form (32). Let us
consider the convective flux in one space direction (say x)

fx = �u', (4)

where ' is the transported quantity, namely ' = 1 for the
mass equation, ' = uj for the momentum equation and H
for the total energy equation. The numerical discretization
of the streamwise derivative of the flux fx on a uniform mesh
with spacing Δx relies on the identification of a numerical
flux f̂x i+1∕2 defined at the intermediate nodes such that

)fx
)x

||||i =
1

Δx

(
f̂x, i+1∕2 − f̂x, i−1∕2

)
. (5)

An energy-conserving numerical flux at the interface i+
1∕2 (figure 1) can be obtained by defining the three-point
averaging operator (32)

(
F̃ , G,H

)
i,l

=
1

8

(
Fi + Fi+l

) (
Gi +Gi+l

) (
Hi +Hi+l

)
,

(6)

and recasting in conservative form the split formulation of
the Eulerian fluxes (33)

f̂x, i+1∕2 = 2

L∑
l=1

al

l−1∑
m=0

(
�̃, u, '

)
i−m,l

, (7)

where the al are the standard coefficients for central finite-
difference approximations of the first derivative, yielding
order of accuracy 2L. In smooth (shock-free) regions of the
flow we use a fourth-order energy-consistent flux (7), which
guarantees that the total kinetic energy is discretely con-
served in the limit case of inviscid incompressible flow (26).
The locally conservative formulation allows straightforward
hybridization of the central flux with classical shock-
capturing reconstructions. In our case, shock-capturing
capabilities rely on the use of Lax-Friedrichs flux vector
splitting, whereby the components of the positive and
negative characteristic fluxes are reconstructed at the inter-
faces using a weighted essentially non-oscillatory (WENO)

: Preprint submitted to Elsevier Page 2 of 11

STREAmS-GPU

reconstruction (34). To judge on the local smoothness of the
numerical solution we rely on a classical shock sensor (35)

� = max

⎛⎜⎜⎜⎝
−∇ ⋅ u√

∇ ⋅ u2 + ∇ × u2 + u2
0
∕L0

, 0

⎞⎟⎟⎟⎠
∈ [0, 1], (8)

where u0 and L0 are suitable velocity and length scales (23),
defined such that � ≈ 0 in smooth zones, and � ≈ 1 in
the presence of shocks. The viscous terms are expanded to
Laplacian form and also approximated with fourth-order for-
mulas to avoid odd-even decoupling phenomena,

)

)x

(
�
)u

)x

||||i
) ||||i =

)�

)x

||||i
)u

)x

||||i + �
)2u

)x2

||||i =

1

Δx2

L∑
l=−L

a2l �i+lui+l + �i
1

Δx2

L∑
l=−L

blui+l,

(9)

where bl are the finite differences coefficient for the second
derivative of order 2L.

2.2. Time integration
A semi-discrete system of ordinary differential equations

stems from discretization of the spatial derivatives,

dw

dt
= R(w) (10)

where w = [�, �u, �v, �w, �E] is the vector of the conser-
vative variables and R the vector of the residuals. The sys-
tem is advanced in time using Wray’s three-stage third-order
scheme (36),

w
(l+1) = w

(l)+�lΔtR
(l−1)+�lΔtR

(l), l = 0, 1, 2, (11)

w
(0) = w

n, wn+1 = w
(3) and the integration coefficient are

�l = (0, 17∕60,−5∕12), �l = (8∕15, 5∕12, 3∕4).

3. Validation

STREAmS has been tailored to carry out three types
of canonical compressible flow configurations, namely
supersonic plane channel flow, supersonic boundary layer
and shock wave/boundary layer interaction. In the following
we validate the solver for these three flows and compare
the results to experimental and numerical data available
in the literature. We use both Reynolds (� = � + �′) and
Favre (� = �̃ + �′′, �̃ = ��∕�) decompositions, where
the overline symbol denotes averaging in the homogeneous
space directions and in time.

3.1. Supersonic plane channel flow
We carry out DNS of plane supersonic channel

flow at bulk Mach number Mb = ub∕cw = 1.5 and
bulk Reynolds number Reb = 2�bubℎ∕�w = 14725,
where �b = 1∕V ∫V �dV is the bulk density and
ub = 1∕(�bV) ∫V �udV is the bulk velocity in the channel

(both exactly constant in time), and �w and cw are the dy-
namic viscosity coefficient and the speed of sound at the wall
temperature, respectively. This configuration corresponds to
a friction Reynolds number Re� = �wu�ℎ∕�w = 489, where
u� =

√
�w∕�w is the friction velocity and �w is the wall

shear stress. The computational domain is a rectangular
box with size 6�ℎ × 2ℎ × 2�ℎ in the x, y, z coordinate
directions, respectively and ℎ is the channel half-height.
The mesh spacing is constant in the wall-parallel directions,
and an error-function mapping is used to cluster mesh
points towards the walls. The number of mesh points in
the three directions is Nx = 1024, Ny = 256, Nz = 512,
corresponding to a mesh spacing in wall units Δx+ = 9,
Δy+ = 0.8–5.7 and Δz+ = 6. Periodicity is enforced
in the homogeneous wall-parallel directions, and no-slip
isothermal conditions are imposed at the channel walls.
The mesh in the wall-normal direction is staggered such
that the wall coincides with an intermediate node, where
the convective fluxes are identically zero. This approach
guarantees correct telescoping of the numerical fluxes
and exact conservation of the total mass, with the further
benefit of doubling the maximum allowed time step (28).
The simulation is initiated with a parabolic streamwise
velocity profile with superposed random perturbations
and large-scale sinusoidal perturbations, corresponding to
streamwise-aligned rollers. The channel flow simulation
is carried out using the central, energy-preserving flux
only, as shock waves do not occur in this configuration.
Figure 2 shows the instantaneous streamwise velocity in
a cross-stream, a streamwise and a wall-parallel plane at
y+ = y∕�v = 15. The instantaneous flow field exhibits the
flow organization typical of incompressible wall turbulence,
whereby the wall-parallel plane is populated by low- and
high-speed streaks associated with sweeps and ejections in
the cross-stream plane. Figure 3 shows the mean velocity
and Reynolds stress profiles. Excellent agreement between
result obtained with STREAmS-GPU and previous DNS
carried out with CPU implementation of the solver (28) is
found.

3.2. Supersonic turbulent boundary layer
We now consider a spatially-developing zero-pressure-

gradient supersonic turbulent boundary layer evolving over
a flat plate. A direct numerical simulation is carried out at
free-stream Mach number M∞ = 2 and Reynolds number
in the low-moderate regime, up to a momentum thickness
Reynolds number Re�2 ≈ 1900, corresponding to a friction
Reynolds number Re� ≈ 600. As for the case of supersonic
channel flow only the energy conservative flux is used as
no shock wave discontinuities are present in the flow. To
properly capture the large scale structures of the boundary
layer (known as superstructures), the simulation is carried
out in a long and wide computational box, which extends
for Lx = 105�in, Ly = 12�in, Lz = 10�in, in the streamwise
(x), wall-normal (y) and spanwise (z) directions, �in being
the boundary layer thickness at the inflow station, computed
considering the 99% of the free-stream velocity. The

: Preprint submitted to Elsevier Page 3 of 11

STREAmS-GPU

x

y

z

Flow

Figure 2: Instantaneous streamwise velocity for plane supersonic channel flow at Re� = 500 and Mb = 1.5. The wall-parallel
plane is at y+ = 15.

(a)

y+

u
+

(b)

y+

τ i
j
/τ

w

Figure 3: Supersonic plane channel flow at Mb = 1.5 and
Re� = 490. (a) Mean streamwise velocity profile, u+ = u∕u� as
a function of y+ = y∕�v. (b) Density scaled turbulent stresses
�ij∕�w as a function of y+. Present DNS data (black solid)
are compared to previous DNS data obtained with the same
numerical algorithm (28) (red dashed).

computational domain is discretized with a mesh consisting
of Nx = 4096, Ny = 256, Nz = 512 grid nodes. Uniform
mesh spacing is used in the wall-parallel directions, and hy-
perbolic sine stretching is used in the wall-normal direction
to cluster grid points towards to the wall, with wall spacing

Δy+w = 0.8. The boundary conditions are specified as
follows. At the upper and outflow boundaries non-reflecting
boundary conditions are imposed by performing character-
istic decomposition in the direction normal to the boundary.
Similar characteristic wave treatment is also applied at the
no-slip wall boundary, where temperature is set equal to its
nominal recovery value Tr∕T∞ = 1 + (− 1)∕2 rM2

∞, with
r = Pr1∕3. In the spanwise direction the flow is assumed
to be statistically homogeneous and periodic boundary
conditions are applied. A critical issue in the simulation
of spatially evolving turbulent flows is the prescription of
the inflow turbulence generation method. In STREAmS,
velocity fluctuations at the inlet plane are imposed by means
of a synthetic digital filtering (DF) approach (37), extended
to the compressible case thanks to the use of the strong
Reynolds analogy (38). An efficient implementation of the
method is achieved using an optimized DF procedure (39),
whereby the filtering operation is decomposed in a sequence
of fast one-dimensional convolutions. The implementation
requires the specification of the Reynolds stress tensor at the
inflow plane, which is interpolated by a dataset of previous
DNS of supersonic boundary layer performed by the same
group (40). The computation is initialized by prescribing
a mean fully developed turbulent compressible boundary
layer obtained by applying the van Driest transformation (41)

to an incompressible profile of the Musker family (42).
In figure 4 we show a snapshot of the instantaneous

density field in a streamwise wall-normal plane. The figure
highlights the main features of the turbulent boundary layer
and its multi-scale structure, characterized by an extremely
intermittent behavior in the outer layer, with regions of rel-
atively quiescent, high-speed irrotational fluid interspersed
with slower, large-scale rotational bulges. The distributions
of the van Driest transformed mean streamwise velocity
profile and velocity fluctuation intensities at a reference

: Preprint submitted to Elsevier Page 4 of 11

STREAmS-GPU

Figure 4: Instantaneous density field in a streamwise wall-normal plane. Contour levels are shown in the range 0.55 < �∕�∞ < 1.05.

100 101 102 1030

5

10

15

20

25

30

P
S
frag

rep
lacem

en
ts

y+

u+ V
D

100 101 102 103-2

0

2

4

6

8

10

P
S
frag

rep
lacem

en
ts

y+

u
+V
D

�
ũ′

′ i
u′

′ j
∕
� w

Figure 5: Comparison of van-Driest transformed mean stream-
wise velocity (a) and fluctuating velocity statistics (b) scaled
in wall units, with reference incompressible DNS (43,44) data
at similar friction Reynolds number. Solid line, present DNS;
symbols, reference data. The dashed lines in (a) denote the
linear u

+
= y+ and log-law u

+
= 5. + 2.44 ln y+.

station (xref = 90�in) are reported in figure 5 in inner scal-
ing. The DNS data are compared with the incompressible
boundary layer datasets (43,44) at similar friction Reynolds
number (Re ≈ 580). The figure shows near collapse of
compressible and incompressible DNS data, after density
variations are accounted for.

3.3. Shock-wave/turbulent boundary layer

interaction
We present a third flow case to test the shock-capturing

capabilities of STREAmS. We carry out DNS of shock-
wave/turbulent boundary layer interaction to replicate the
flow conditions of reference experiments (45), characterized
by a free-stream Mach number M = 2.28 and incidence
angle of the shock generator � = 8◦.

The simulation is performed in a computational domain
of sizeLx×Ly×Lz = [100×12×6]�in discretised usingNx×

Ny×Nz = [4096×384×288]grid points. Here �in represents
the thickness of the incoming boundary layer upstream of

the interaction. The specification of the boundary condition
follows the setup adopted for the previous flow case, except
for the upper boundary of the computational domain, where
the shock is artificially generated by imposing the inviscid
oblique shock solution corresponding to the selected flow
deflection.

The flow organization in the investigated SBLI is given
by figure 6, where contours of the density field are shown in a
streamwise-wall-normal plane superposed with contours of
the streamwise velocity fluctuations in a wall-parallel plane.
The figure shows the complex structure of the interaction,
characterized by the presence of an impinging and a reflected
shock, which cause thickening of the incoming boundary
layer, and the formation of a small recirculation bubble. The
typical pattern of high- and low-speed streaks that character-
izes the organization of the streamwise velocity disappears
across the interaction region, and reform towards the end of
the computational domain, where the boundary layer gradu-
ally relaxes to the equilibrium state.

A comparison of DNS data with the reference exper-
iment is reported in Fig 7, where the distribution of the
mean wall pressure and of the streamwise fluctuation inten-
sity is shown across the interaction zone, in terms of the
scaled interaction coordinate (x− ximp)∕L, L being the dis-
tance between the nominal impingement point of the incom-
ing shock and the apparent origin of the reflected shock. It
turns out that the structure of the interaction zone is well
captured by the simulation, which predicts a wall pressure
rise in excellent agreement with the available experimen-
tal data. Similarly, very good agreement is observed for
the root-mean-squareof the streamwise fluctuation intensity,
whose increase in the interaction region is associated with
the amplification of turbulence caused by the adverse pres-
sure gradient imparted by the shock system.

4. GPU Implementation and computational

performance

4.1. Parallelization and GPU porting
HPC is currently facing a major transition as the major-

ity of systems in operation is still based on CPUs, but GPU-
based systems are experiencing rapid growth. For this rea-
son in this phase it is very useful to have a code which can
be used on different architectures without requiring further
modifications. Tuning the code for different architectures
typically involves considerable commitment, including man-

: Preprint submitted to Elsevier Page 5 of 11

STREAmS-GPU

Figure 6: Visualization of main SBLI features. Contours of the instantaneous density field in a streamwise wall-normal plane,
superposed with contours of streamwise velocity in a wall-parallel plane at y+ = 30.

-5 -4 -3 -2 -1 0 1 2 3 4 5

0

1

2

3

P
S
frag

rep
lacem

en
ts

(x − ximp)∕L

(p
w
−
p
∞
)∕
(p

2
−
p
∞
)

-3 -2 -1 0 1 2 3
0

0.1

0.2

0.3

P
S
frag

rep
lacem

en
ts

(x − ximp)∕L

(p
w
−
p
∞
)∕
(p

2
−
p
∞
)

√ ũ′
′ u

′′
∕
u ∞

Figure 7: Distribution of (a) mean wall pressure and (b)
streamwise turbulent fluctuation intensity at y = 0.1L as a
function of the scaled interaction coordinate (x−ximp)∕L. Solid

line, DNS data; open triangles, reference experiment (45).

agement effort in maintaining, updating or modifying mul-
tiple versions of the same code. For this reason we design
STREAmS to efficiently work on the most common HPC ar-
chitectures operating today. The code is written in the For-
tran language – mostly using Fortran 90 features – which
is widely used in HPC, and it is parallelized using the MPI
paradigm. Domain decomposition is carried out in two di-
rections – streamwise and spanwise – in order to limit the
amount of data transferred for updating the ghost nodes, con-
sidering that the communication times may become impor-
tant when using a large number of tasks.

STREAmS has been developed to support the use of

multi-GPUs architectures, while retaining the possibility
to compile and use the code on standard CPU based
systems. To achieve this goal, different programming
approaches are possible. A first option is using directives,
for instance OpenACC (46) or OpenMP (47), which allows
to keep the CPU code completely unchanged. A second
approach relies on the use of specialized platforms for a
specific hardware, which for NVIDIA GPUs are CUDA (48)

and CUDA-Fortran (49). A third strategy is to use more
portable but more inconvenient or less popular tools, such
as OpenCL (50) or HIP: C ++ Heterogeneous-Compute
Interface for Portability (51).

For these reasons in STREAmS we opt for CUDA-
Fortran as this allows us to achieve good parallel per-
formance while limiting the changes to the initial CPU
code. In particular, the use of the cuf automatic kernels
allows the large majority of the code to remain unaltered,
thus avoiding keeping different versions of the code.
The GPU-specific parts of the solver are marked by the
#ifdef USE_CUDA preprocessing directive. This strategy
resembles the approach adopted by other popular codes in
the field of incompressible turbulence such as AFiD (14) and
CaNS (9).

Another important part of the GPU porting is repre-
sented by the memory management between CPU and
GPU. AFiD employs duplicated arrays residing on host and
device, e.g. w and w_gpu, respectively. The device arrays
are distinguished using the CUDA Fortran device attribute
and are active only when CUDA compilation is enabled,
i.e. declared in modules inside preprocessing regions
marked by USE_CUDA tokens. When using device variables
in the computing procedures, the variables are renamed
inside USE_CUDA regions using module aliasing so that the
computations can always work with the normal (host)
names, i.e. use param, only: w => w_gpu. If the variables
are passed, the declaration of the dummy arguments must
also be distinguished by adding attributes (device) inside
USE_CUDA regions. CaNS instead uses a more recent approach

: Preprint submitted to Elsevier Page 6 of 11

STREAmS-GPU

based on CUDA managed memory. The managed memory
potentially allows to avoid completely the declaration of the
CPU and GPU versions of the same variable that can instead
be used both in CPU and GPU code sections. However,
the use of managed memory requires particular care to
optimize the underlying transfers and to avoid undesired
automatic transfers. To achieve a good managed memory
implementation, some information must be provided to the
CUDA platform, for example through the cudaMemAd-

vise and cudaMemPrefetchAsync functions, which in our
opinion reduce the readability of the code. For this reason
in STREAmS we followed a different approach, based on
the following strategy. For each array, two versions are
declared inside the Fortran module: a baseline array w and
the corresponding computing array w_gpu. The latter resides
on the device, i.e. has the device attribute, only if the code
is compiled by activating CUDA.

real, allocatable, dimension(:,:,:;:) :: w, w_gpu

#ifdef USE_CUDA

attributes(device) :: w_gpu

#endif

Moreover, w_gpu is explicitly allocated only if CUDA
compilation is active.

#ifdef USE_CUDA

allocate(w_gpu(1:nx, 1:ny, 1:nz, 5))

#endif

The baseline array w is used during the code initializa-
tion and finalization stages while w_gpu is used during the
time marching section. To this aim, before starting the time
evolution it is necessary to ensure that w_gpu contains the
same data as w. If CUDA is active, this is achieved by mak-
ing a CPU-to-GPU copy managed transparently by CUDA-
Fortran. If CUDA is not active, Fortran’s move_alloc proce-
dure is used, which allows to move the allocation from w to
w_gpu, both on CPU.

#ifdef USE_CUDA

w_gpu = w

#else

call move_alloc(w, w_gpu)

#endif

A similar procedure is applied for the reverse transfer
from GPU to CPU. In conclusion, with this memory man-
agement the changes to the original solver are limited to
variable declaration and allocation and data transfer between
CPU and GPU at the beginning and at the end of the com-
putation, while all the other parts of the code remain mostly
unchanged. Specification of the CUDA kernels is done by
using automatic cuf syntax,

!$cuf kernel do(3) <<<*,*>>>

do k=1,nz

do j=1,ny

do i=1,nx

do m=1,nv

w_gpu(m,i,j,k) = w_gpu(m,i,j,k)+fln_gpu(m,i,j,k)

enddo

enddo

enddo

enddo

!@cuf iercuda=cudaDeviceSynchronize()

therefore only minor changes to the loops are needed. In
particular, interdependent loops have been avoided as well as
small loops, which have been converted into scalar variables.

Large computational domains require the use of multiple
GPUs, in which each MPI process typically manages one
graphic card. Communication between multiple GPUs can
be carried out in two main fashions. The first option relies
on manual copy between host and GPU to guarantee that the
MPI communications always occur between variables re-
siding on the host. The second option relies on the so-called
CUDA-Aware MPI implementations which allow the user to
call MPI application programming interface (API) passing
device-resident variables. STREAmS has been parallelized
to support both data communication patterns, selectable
according to compilation options. This allows to correctly
run in environments where CUDA-Aware implementations
are not available. MPI communications between multiple
GPUs can negatively affect the parallel performance of
the solver, depending on the network speed between the
computing nodes. To improve the scalability performance,
the GPU implementation of STREAmS optionally supports
asynchronous patterns in which the GPU computation is
overlapped with the swapping procedure necessary to ex-
change information across adjacent blocks. This is done by
exploiting the built-in asynchrony of the CUDA kernels and
the capabilities of the CUDA streams. In this regard, two
slightly different strategies were implemented depending on
the availability of the CUDA-Aware MPI. As an example,
in Figure 8 a sketch of the time-lines corresponding to
the evaluation of the streamwise convective fluxes are
represented. Basically, the evaluation for internal points
can be performed before receiving the ghost nodes and for
this reason can be overlapped with MPI communications.
Following this idea, the CUDA-Aware MPI implementation
(left) is straightforward while the standard MPI implemen-
tation (right) requires asynchronous CPU-GPU transfers
using cudaMemcpyAsync in a specific CUDA stream. After
receiving the data on ghost nodes, the boundary values can
be computed.

4.2. Performance results
In this section we discuss the parallel performance of

STREAmS, reporting both weak and strong scaling of the
code. We have carried out test runs at CINECA on the HPC
cluster DAVIDE, an energy-aware Petaflops Class High Per-
formance Cluster based on Power 8 Architecture and cou-
pled with NVIDIA Tesla Pascal GPUs P100 with NVLink.
We first report the STREAmS performance on a single GPU
card, comparing the elapsed time per time step to a single
CPU node, for different HPC architectures, figure 9. For the

: Preprint submitted to Elsevier Page 7 of 11

STREAmS-GPU

GPU-stream1

GPU-stream2

MPI standard

D2H H2D

SendRecv

Euler-x internal E-x boundary

GPU

MPI CUDA-aware SendRecv

Euler-x internal E-x boundary

Figure 8: Sketch of asynchronous time-lines for the evaluation of convective fluxes: internal fluxes evaluation (Euler-x internal),
boundary fluxes evaluation (E-x boundary), host-to-device transfers (H2D), device-to-host transfers (D2H), MPI communications
(SendRecv). CUDA-Aware MPI based time-line is shown on the left while standard MPI time-line is provided on the right.

Node
 Broadwell
 36 cores

GPU
K40

Node
 KNL

 64 cores

GPU
P100

Node
 Skylake
 48 cores

GPU
 V100

0

2

4

6

8

10

12

Ite
ra
tio
n
el
ap
se
d
tim
e
[s
]

4.73

9.51

7.43

2.49 2.82

1.43

2014/09 2014/11 2016/06 2016/06 2017/06 2018/03

Figure 9: Comparison of STREAmS performance – elapsed
time per iteration vs – using different HPC architectures:
elapsed time per iteration versus the used processing unit
is provided. For CPU-based runs a single computing node
is employed using the MPI parallelization. For GPU-based
runs a single GPU is used. The grid size is 1008×251×234
(1008×251×236 for KNL run). Improvement of processing unit
power over years is underlined by the release dates in the upper
horizontal axis.

CPU version of the code, we use the Intel compiler. For this
test we use a computational mesh with 1008×251×234, cor-
responding to about 10GB of memory allocation on a GPU.
On the top axis figure 9 we report the release dates for each
processing unit, highlighting that GPUs present a more sig-
nificant improvement over the years with respect to CPUs.

As for the solver performance on multiple nodes/GPUs
we note that communications between GPUs could result in
lower performance compared to CPUs, due to the additional
data transfer between CPU and GPU. On the other hand,
this additional computational cost is typically mitigated due
to the use of fewer MPI processes when running on GPUs
with respect to CPUs. Figure 10 shows the speed-up of the
synchronous and asynchronous versions of the code keeping
constant the number of grid points 2560×251×512and using
4 GPUs (one computing node) as reference. Two additional
speed-up curves are also reported, corresponding to artifi-
cially reduced performance of the interconnection. Low-
performance interconnection was emulated by intentionally
reiterating the MPI communications seven times. CUDA-
Aware MPI was used.

Strong scalability is very good up to 4 computing nodes
(16 GPUs) and good up to 16 nodes. After that, the speed-up
still increases but efficiency degradation is significant. We

0 5 10 15 20 25 30 35
#Nodes

0

5

10

15

20

25

30

35

sp
ee

d-
up

 =
 t 1

/t N

sync
async
sync-slow_network
async-slow_network
ideal

82
.2

41
.1

20
.6

10
.3

5.
1

2.
6

MCells per GPU

Figure 10: Strong scaling of STREAmS using GPU P100 based
cluster D.A.V.I.D.E.: the speed-up of execution compared to
the reference case is plotted against the number of used nodes.
The grid size is 2560×251×512. The reference case employs
one computational node equipped with 4 GPUs. On the upper
horizontal axis the millions of cells residing on each GPU is
provided to understand the link between the GPU filling and
the performances. Four types of MPI parallelization are consid-
ered: synchronous, asynchronous, synchronous with artificially
slow network and asynchronous with artificially slow network.

find that for both network conditions the asynchronous ver-
sion of the code is slightly faster than the regular one. On
the top axis we report the millions of cells processed by each
GPU which shows that 10 millions points per GPU are a rea-
sonable threshold to guarantee optimal efficiency.

In Figure 11 we provide a measure of the weak-scaling
performance, i.e. by keeping constant the number of cells
processed by each GPU. The reference case has again a
mesh with 2560 × 251 × 512 points, but the grid is scaled
as the number of nodes increases. We report the number
of cells updated per second and per GPU, which should be
constant when increasing the total number of GPUs. The
performance of the synchronous and asynchronous version
of the solver for the case with the real (fast) network are both
excellent. In the case of artificially slow network, the syn-
chronous version shows performance degradation, whereas
the asynchronous code completely hides the communication
times. It may be concluded that using the asynchronous
version of the code is always recommended, although the
performance improvement is not always significant.

Given the availability of recently developed GPU solver
for the simulation of canonical incompressible turbulent

: Preprint submitted to Elsevier Page 8 of 11

STREAmS-GPU

GPUs 1 2 8 32 128 512 2048

STREAmS 3.65 3.65 3.65 3.65 3.65 3.65 3.65
AFiD 0.84 1.59 1.76 2.17 3.19 5.5 6
CaNS 0.36 1.67 2.1 1.37 1.8 2.34 -

Table 1

Performances of STREAmS compared to popular CFD CUDA-enabled codes AFiD and
CaNS. Seven computational grids are provided in the weak scaling spirit starting from 8.39
million grid points case. Correspondingly, the number of employed GPUs ranges from 1 to
2048. For CaNS, explicit compilation for diffusive terms is considered.

0 5 10 15 20 25 30 35
#Nodes

0

5

10

15

20

25

M
Ce

lls
 u
pd

at
ed

 p
er
 se

co
nd

 a
nd

 p
er
 G
PU

sync
async
sync-slow_network
async-slow_network

Figure 11: Weak scaling of STREAmS using the GPU P100
based cluster D.A.V.I.D.E.: the millions of cells processed by
each GPU per second are plotted against the number of com-
puting nodes. Four types of MPI parallelizations are consid-
ered: synchronous, asynchronous, synchronous with artificially
slow network and asynchronous with artificially slow network.

flows, i.e. AFiD and CaNS, it is interesting to attempt a
comparison with the STREAmS performance. The compar-
ison is physically significant in the low-Mach-number limit
(say M∞ < 0.2), at which the results of incompressible and
compressible solvers are basically identical (52). Obviously,
compressible solvers require the evaluation of a much
more complex right-hand side and use of smaller time
step owing to the acoustic time step restriction. On the
other hand, incompressible solvers requires the solution
of a Poisson equation at each time step, which is the most
computation-intensive part of the solver, implying extensive
use of all-to-all MPI communications. AFiD solves the
incompressible Navier-Stokes equations with the Boussi-
nesq approximation for temperature with implicit treatment
of the diffusive terms. CaNS solves the incompressible
equations without the scalar equation, and can be compiled
with explicit or implicit treatment of the diffusive terms.
The measured clock times per iteration of STREAmS, AFiD
and CaNS are compared in Table 1, in a weak scaling test
with base computational mesh of 8.39 million of points, and
with up to 2048 GPUs. The benchmarks were performed
using the CSCS Piz-Daint cluster featuring one P100 GPU
per node. Asynchronous standard MPI compilation of
STREAmS was employed.

Although actual code comparison should also consider
the accuracy of the numerical methods needed to achieve
equivalent results, it is possible to attempt an interpretation
of the trends. First it is observed that, when using a small
number of GPUs, the time required by STREAmS for sin-
gle iteration is larger that for AFiD and for the explicit ver-
sion of CaNS. On the other hand, since STREAmS shows
nearly ideal weak scalability, the performance gap with the
incompressible solvers is reduced as the number of GPUs in-
creases, eventually reversing for the AFiD implicit diffusion
code. Albeit in a limited and partial context, and depend-
ing on the Mach number, this trend suggests that compress-
ible solvers can potentially become competitive with classi-
cal incompressible solvers in massively parallel calculations
on HPC platforms with thousands of GPUs.

5. Conclusions

We heve presented a recent version of our in-house com-
pressible flow solver STREAmS, that has been been ported
to CUDA-Fortran and tailored to canonical wall-bounded
flows, namely compressible channel, supersonic boundary
layer and SBLI. STREAmS stems from two decades expe-
rience of our research group on DNS of compressible wall-
bounded flows and a baseline version of the solver, is re-
leased open-source under GPLv3 license with the aim to pro-
vide the fluid dynamics community with a highly-parallel
compressible flow solver. The use of CUDA-Fortran with
the use of cuf automatic kernels allowed us to largely min-
imize the changes to the original flow solver and to com-
pile and run the code on different HPC architectures. The
tests carried out on the GPU cluster DAVIDE at CINECA
show very good scalability performance, proving that the
solver can be used to carry out large scale direct numeri-
cal simulations. Interestingly STREAmS shows improved
weak scalability performance compared to the state-of-the-
art incompressible GPU solvers. Although it is well known
that compressible flow solvers typically show better scala-
bility than the incompressible ones, in our experience the
difference in performance is less marked on CPUs. This pre-
liminary results show that for large scale simulations using
thousands of GPUs the use of compressible flow solvers op-
erating at low Mach number could potentially become com-
petitive with incompressible solvers, despite the substantial
overhead in terms of floating point operations, and the re-
striction on the acoustic time step limitation.

: Preprint submitted to Elsevier Page 9 of 11

STREAmS-GPU

The availability of the GPU version of the solver will
allow to take advantage of the contemporary pre-Exascale
systems and the next generation of Exascale supercomput-
ers currently under development, allowing to significantly
extend the range of simulated Reynolds number up to the
genuine high-Reynolds number regime (Re� > 104). This
opportunity will allow the flow community to provide defi-
nite answers to key issues, as the presence of a logarithmic
range of variation of the streamwise velocity variance with
the wall distance, as predicted in the overlap layer by the at-
tached eddy hypothesis, and for which partial support comes
from high-Reynolds-number experiments.

Acknowledgements

M. Bernardini was supported by the Scientific Indepen-
dence of Young Researchers program 2014 (Active Control
of Shock-Wave/ Boundary-Layer Interactions project,
grant RBSI14TKWU), which is funded by the Ministero
Istruzione Università e Ricerca. The authors are especially
grateful for the computational resources provided by the
Cineca Italian Computing Center.

References

[1] G. Patterson, S. Orszag, Spectral calculations of isotropic turbulence:
Efficient removal of aliasing interactions, Phys. Fluids 14 (11) (1971)
2538–2541.

[2] J. Kim, P. Moin, R. Moser, Turbulence statistics in fully developed
channel flow at low Reynolds number, J. Fluid Mech. 177 (1987) 133–
166.

[3] F. Harlow, J. Welch, Numerical calculation of time-dependent viscous
incompressible flow of fluid with free surface, Phys. Fluids 8 (12)
(1965) 2182–2189.

[4] P. Orlandi, Fluid flow phenomena: a numerical toolkit, Vol. 55,
Springer Science & Business Media, 2012.

[5] H. Weller, G. Tabor, H. Jasak, C. Fureby, A tensorial approach to com-
putational continuum mechanics using object-oriented techniques,
Comput. Phys. 12 (6) (1998) 620–631.

[6] P. Fisher, J. Kruse, J. Mullen, H. Tufo, J. Lottes, S. Kerkemeier,
NEK5000: open source spectral element CFD solver (2008).
URL http://nek5000.mcs.anl.gov/index.php/MainPage

[7] C. Cantwell, D. Moxey, A. Comerford, A. Bolis, G. Rocco, G. Men-
galdo, D. D. Grazia, S. Yakovlev, J.-E. Lombard, D. Ekelschot,
B. Jordi, H. Hu, Y. Mohamied, C. Eskilsson, B. Nelson, P. Vos,
C. Biotto, R. Kirby, S. Sherwin, Nektar++: An open-source spec-
tral/hp element framework, Comput. Phys. Commun. 192 (2015) 205–
219.

[8] E. van der Poel, R. Ostilla-Mónico, J. Donners, R. Verzicco, A pencil
distributed finite difference code for strongly turbulent wall-bounded
flows, Comput. Fluids 116 (2015) 10–16.

[9] P. Costa, A FFT-based finite-difference solver for massively-parallel
direct numerical simulations of turbulent flows, Comput. Math. Appl.
76 (8) (2018) 1853–1862.

[10] V. Lee, C. Kim, J. Chhugani, M. Deisher, D. Kim, A. Nguyen,
N. Satish, M. Smelyanskiy, S. Chennupaty, P. Hammarlund, R. Sing-
hal, P. Dubey, Debunking the 100X GPU vs. CPU myth: an evaluation
of throughput computing on CPU and GPU, in: ISCA ‘10: proceed-
ings of the 37th annual international symposium on computer archi-
tecture. New York, NY, USA, Vol. 38, ACM, 2010, pp. 451–460.

[11] J. Dongarra, P. Luszczek, TOP500, Springer US, Boston, MA, 2011.
doi:10.1007/978-0-387-09766-4_157 .
URL https://doi.org/10.1007/978-0-387-09766-4_157

[12] 136 GPU-Accelerated Supercomputers Feature in TOP500
| NVIDIA Blog, https://blogs.nvidia.com/blog/2019/11/19/

record-gpu-accelerated-supercomputers-top500/ , accessed: 2020-
01-16.

[13] The GREEN 500, https://www.top500.org/green500/, accessed:
2020-01-16.

[14] X. Zhu, E. Phillips, V. Spandan, J. Donners, G. Ruetsch, J. Romero,
R. Ostilla-Mónico, Y. Yang, D. Lohse, R. Verzicco, M. Fatica,
R. Stevens, AFiD-GPU: a versatile Navier–Stokes solver for wall-
bounded turbulent flows on GPU clusters, Comput. Phys. Commun
229 (2018) 199–210.

[15] P. Costa, E. Phillips, L. Brandt, M. Fatica, GPU acceleration of CaNS

for massively-parallel direct numerical simulations of canonical fluid
flows, arXiv preprint arXiv:2001.05234.

[16] A. Honein, P. Moin, Higher entropy conservation and numerical
stability of compressible turbulence simulations, J. Comput. Phys.
201 (2) (2004) 531–545.

[17] G. Coppola, F. Capuano, S. Pirozzoli, L. de Luca, Numerically stable
formulations of convective terms for turbulent compressible flows, J.
Comput. Phys. 382 (2019) 86–104.

[18] D. Modesti, S. Pirozzoli, A low-dissipative solver for turbulent com-
pressible flows on unstructured meshes, with OpenFOAM implemen-
tation, Comput. Fluids 152 (2017) 14–23.

[19] T. Economon, F. Palacios, S. Copeland, T. Lukaczyk, J. Alonso, SU2:
An open-source suite for multiphysics simulation and design, AIAA
Journal 54 (3) (2015) 828–846.

[20] C. Jacobs, S. Jammy, N. Sandham, OpenSBLI: A framework for
the automated derivation and parallel execution of finite difference
solvers on a range of computer architectures, J. Comput. Sci. 18
(2017) 12–23.

[21] Legion webpage, https://legion.stanford.edu/, accessed: 2020-03-
313131.

[22] M. D. Renzo, L. Fu, J. Urzay, HTR solver: An open-source
exascale-oriented task-based multi-GPU high-order code for hyper-
sonic aerothermodynamics, Comput. Phys. Commun. (2020) 107262.

[23] S. Pirozzoli, M. Bernardini, Turbulence in supersonic boundary layers
at moderate Reynolds number, J. Fluid Mech. 688 (2011) 120–168.

[24] S. Pirozzoli, M. Bernardini, Probing high-Reynolds-number effects in
numerical boundary layers, Phys. Fluids 25 (2) (2013) 021704.

[25] S. Pirozzoli, F. Grasso, Direct numerical simulation of impinging
shock wave/turbulent boundary layer interaction at M= 2.25, Phys.
Fluids 18 (6) (2006) 065113.

[26] S. Pirozzoli, M. Bernardini, F. Grasso, Direct numerical simulation
of transonic shock/boundary layer interaction under conditions of in-
cipient separation, J. Fluid Mech. 657 (2010) 361–393.

[27] M. Bernardini, S. Pirozzoli, P. Orlandi, Compressibility effects on
roughness-induced boundary layer transition, Int. J. Heat and Fluid
Flow 35 (2012) 45–51.

[28] D. Modesti, S. Pirozzoli, Reynolds and Mach number effects in com-
pressible turbulent channel flow, Int. J. Heat Fluid Flow 59 (2016)
33–49.

[29] D. Modesti, S. Pirozzoli, Direct numerical simulation of supersonic
pipe flow at moderate Reynolds number, Int. J. Heat Fluid Flow 76
(2019) 100–112.

[30] D. Modesti, S. Pirozzoli, F. Grasso, Direct numerical simulation of
developed compressible flow in square ducts, Int. J. Heat Fluid Flow
76 (2019) 130–140.

[31] F. Salvadore, M. Bernardini, M. Botti, GPU accelerated flow solver
for direct numerical simulation of turbulent flows, J. Comput. Phys.
235 (2013) 129–142.

[32] S. Pirozzoli, Generalized conservative approximations of split con-
vective derivative operators, J. Comput. Phys. 229 (19) (2010) 7180–
7190.

[33] C. Kennedy, A. Gruber, Reduced aliasing formulations of the con-
vective terms within the Navier-Stokes equations for a compressible
fluid, J. Comput. Phys. 227 (3) (2008) 1676–1700.

[34] G. S. Jiang, C. W. Shu, Efficient implementation of weighted eno
schemes, J. Comput. Phys. 126 (1996) 202.

[35] F. Ducros, V. Ferrand, F. Nicoud, C. Weber, D. Darracq,
D. Gacherieu, T. Poinsot, Large-eddy simulation of the

: Preprint submitted to Elsevier Page 10 of 11

http://nek5000.mcs.anl.gov/index.php/MainPage
http://nek5000.mcs.anl.gov/index.php/MainPage
https://doi.org/10.1007/978-0-387-09766-4_157
http://dx.doi.org/10.1007/978-0-387-09766-4_157
https://doi.org/10.1007/978-0-387-09766-4_157
https://blogs.nvidia.com/blog/2019/11/19/record-gpu-accelerated-supercomputers-top500/
https://blogs.nvidia.com/blog/2019/11/19/record-gpu-accelerated-supercomputers-top500/
https://www.top500.org/green500/
https://legion.stanford.edu/

STREAmS-GPU

shock/turbulence interaction, J. Comput. Phys. 152 (2) (1999)
517–549.

[36] P. Spalart, R. Moser, M. Rogers, Spectral methods for the Navier-
Stokes equations with one infinite and two periodic directions, J.
Comput. Phys. 96 (2) (1991) 297–324.

[37] M. Klein, A. Sadiki, J. Janicka, A digital filter based generation of
inflow data for spatially developing direct numerical or large eddy
simulations, J. Comput. Phys. 186 (2) (2003) 652–665.

[38] E. Touber, N. D. Sandham, Large-eddy simulation of low-frequency
unsteadiness in a turbulent shock-induced separation bubble., Theo-
retical and Computational Fluid Dynamics 23 (2009) 79–107.

[39] A. Kempf, S. Wysocki, M. Pettit, An efficient, parallel low-storage
implementation of Klein’s turbulence generator for les and dns, Com-
puters & fluids 60 (2012) 58–60.

[40] S. Pirozzoli, M. Bernardini, Supersonic turbulent boundary layers -
DNS database, http://newton.dma.uniroma1.it/dnsm2 (2011).

[41] S. A.J., J. Dussauge, Turbulent Shear Layers in Supersonic Flow,
American Institute of Physics, New York, 2006.

[42] E. expression for the smooth wall velocity distribution in a turbu-
lent boundary layer, Musker, a.j., AIAA J. 17 (1979) 655–657.

[43] M. Simens, J. Jimenez, S. Hoyas, Y. Mizuno, A high-resolution code
for turbulent boundary layers, J. Comput. Phys. 228 (2009) 4218–
4231.

[44] J. Jimenez, S. Hoyas, M. Simens, Y. Mizuno, Turbulent boundary lay-
ers and channels at moderate Reynolds numbers, J. Fluid Mech. 657
(2010) 335–360.

[45] P. Dupont, C. Haddad, J. Debiéve, Space and time organization in a
shock-induced separated boundary layer, J. Fluid Mech. 559 (2006)
255âĂŞ277.

[46] OpenACC, https://www.openacc.org/, accessed: 2020-01-16.
[47] OpenMP, https://www.openmp.org/, accessed: 2020-01-16.
[48] CUDA, https://developer.nvidia.com/cuda-zone, accessed: 2020-

01-16.
[49] CUDA FORTRAN, https://developer.nvidia.com/cuda-fortran, ac-

cessed: 2020-01-16.
[50] OpenCL, https://www.khronos.org/opencl/, accessed: 2020-01-16.
[51] HIP : C++ Heterogeneous-Compute Interface for

Portability, https://gpuopen.com/compute-product/

hip-convert-cuda-to-portable-c-code/ , accessed: 2020-01-16.
[52] D. Modesti, S. Pirozzoli, An efficient semi-implicit solver for direct

numerical simulation of compressible flows at all speeds, J. Sci. Com-
put. 75 (2018) 308–331.

: Preprint submitted to Elsevier Page 11 of 11

http://newton.dma.uniroma1.it/dnsm2
https://www.openacc.org/
https://www.openmp.org/
https://developer.nvidia.com/cuda-zone
https://developer.nvidia.com/cuda-fortran
https://www.khronos.org/opencl/
https://gpuopen.com/compute-product/hip-convert-cuda-to-portable-c-code/
https://gpuopen.com/compute-product/hip-convert-cuda-to-portable-c-code/

