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Abstract Riblets reduce skin-friction drag until their viscous-scaled size becomes large
enough for turbulence to approach the wall, leading to the breakdown of drag-reduction.
In order to investigate inertial-flow mechanisms that are responsible for the breakdown,
we employ the minimal-span channel concept for cost-efficient direct numerical simulation
(DNS) of rough-wall flows (MacDonald et al., J. Fluid Mech., vol. 816, 2017, pp. 5–42).
This allows us to investigate six different riblet shapes and various viscous-scaled sizes for
a total of 21 configurations. We verify that the small numerical domains capture all relevant
physics by varying the box size and by comparing to reference data from full-span channel
flow. Specifically, we find that, close to the wall in the spectral region occupied by drag-
increasing Kelvin–Helmholtz rollers (Garcı́a-Mayoral & Jiménez, J. Fluid Mech., vol. 678,
2011, pp. 317–347), the energy-difference relative to smooth-wall flow is not affected by
the narrow domain, even though these structures have large spanwise extents. This allows
us to evaluate the influence of the Kelvin–Helmholtz instability by comparing fluctuations
of wall-normal and streamwise velocity, pressure and a passive scalar over riblets of differ-
ent shapes and viscous-scaled sizes to those over a smooth wall. We observe that triangular
riblets with a tip angle α = 30° and blades appear to support the instability, whereas triangu-
lar riblets with α = 60°–90° and trapezoidal riblets with α = 30° show little to no evidence
of Kelvin–Helmholtz rollers.
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1 Drag-reduction performance of riblets

Riblets are small streamwise-aligned grooves on a surface that have been shown to reduce
skin-friction drag compared to a smooth wall [41,40,28,3]. The skin-friction coefficient
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C f = 2/U+2
δ is defined by the friction-scaled mean streamwise velocity U+ ≡U/uτ at the

half-channel or boundary-layer height δ . The superscript + denotes viscous scaling with the
kinematic fluid viscosity ν and friction velocity uτ ≡

√
τw/ρ , where ρ is the fluid density

and τw the wall shear stress (drag per unit plan area), such that C f = 2τw/(ρU2
δ ). Drag reduc-

tion of a riblet surface compared to a smooth wall is commonly given by the relative change
of the skin-friction coefficients DR ≡ 1−C f /C f ,smooth. However, C f ,smooth, and therefore DR,
degrades with increasing Reynolds number [37]. An alternative, Reynolds number indepen-
dent measure of the drag-change is given by the decrement of the viscous-scaled mean
streamwise velocity, ∆U+ ≡U+

smooth−U+, at matched heights in the outer layer of two flows
with the same friction Reynolds number Reτ ≡ δ+ = δuτ/ν . For example, DR ≈−0.1∆U+ at
Reτ = 395, which is accessible through DNS, but DR ≈ −0.06∆U+ at flight conditions with
Reτ = 50000, based on the conversion derived by Spalart & McLean [37].

The flow mechanism responsible for drag-reduction by riblets is well understood and
can be explained by the concept of protrusion heights in the limit of vanishingly small ri-
blets. The streamwise mean-flow reaches an average depth below the riblet crest given by the
longitudinal protrusion height `+U , that depends on the groove shape and size [2]. Turbulent
lateral flow is obstructed by the riblets and therefore only penetrates the groove to a depth
given by `+T < `+U [28]. Luchini [27] points out that a reference smooth wall should be con-
sidered at the height given by `+T for the two flows to be similar, i.e. that their total stresses
match at every height. This placement of the reference wall therefore provides the correct
measure of the drag-change ∆U+. At the height of the reference smooth-wall, the riblet flow
has the velocity U+ = `+U − `+T [27], because the slope dU+/dz+ ≈ 1 in the viscous sublayer.
The velocity difference compared to the smooth wall flow extends into the logarithmic layer,
where it describes the drag-change ∆U+ = `+U − `+T [27]. However, this relation between the
protrusion heights and ∆U+ is only valid for vanishingly small riblets and as their viscous-
scaled size increases, drag characteristics change significantly. The drag-change optimum
of traditional riblet shapes was empirically shown to scale with the viscous-scaled groove
cross-section A+g and is obtained for riblet sizes `+g ≡

√
A+g ≈ 11 [14].

For larger riblets, drag increases and ultimately surpasses smooth-wall drag, because
the flow in and around the grooves becomes less dominated by viscosity as different inertial
flow effects contribute to drag. The spanwise component of streamwise vortices is deflected
downward by the riblet tips, creating secondary flows that transport momentum towards the
wall [17]. Particularly for widely spaced riblets, the streamwise vortices and their secondary
flows sweep streamwise momentum towards the large wetted surface area [7]. Furthermore,
Kelvin–Helmholtz rollers have been shown to augment wall-normal momentum transport
towards the wall above blade riblets, leading to increased drag [14]. These rollers evolve
around an inflection point in the profile of mean streamwise velocity that is created between
the slower flow in the groove and the faster bulk flow above. Kelvin–Helmholtz rollers are
well known in free shear flows [9], but have also been observed in wall-bounded flows over
porous surfaces [25,4,18] and vegetation canopies [35,34,33,36] that allow wall-normal
velocity fluctuations. For riblets, fewer data are available, but Garcı́a-Mayoral & Jiménez
[14,15] note that the Kelvin–Helmholtz instability affects a distinct spectral region in the
flow over blade riblets. By comparing 2D spectra in DNS at heights of less than 30 viscous
units above the riblet crest to smooth-wall flow, they find that Kelvin–Helmholtz rollers
have an average streamwise periodicity in the range 65≲λ+

x ≲ 290 and that they are spanwise
coherent with wavelengths λ+

y ≳ 130. In this study we will more conservatively only consider
structures with λ+

y ≳ 250 to separate them more clearly from other near-wall turbulence
(details in § 4.3).
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Garcı́a-Mayoral & Jiménez [14] evaluate the momentum transport by Reynolds stresses
due to Kelvin–Helmholtz rollers to quantify the drag penalty associated with the instability.
They demonstrate that drag from Kelvin–Helmholtz rollers becomes more significant with
increasing size of blade riblets, which coincides with the breakdown of drag reduction for
`+g ≳ 11. Therefore, Kelvin–Helmholtz rollers contribute to the drag increase of large blade
riblets [14,15], as also observed for vegetation canopies [34,36] and porous surfaces [18].
However, it remains to be seen if Kelvin–Helmholtz rollers develop above all riblets, because
studies of plant canopies and porous substrates also show that the Kelvin–Helmholtz insta-
bility only develops if the surface creates the necessary drag and inflectional velocity profile
[35,34,33]. In fact, in the present study, we show that the appearance of Kelvin–Helmholtz
rollers over riblets is likewise not universal, but instead dependent on the riblet geometry. We
visualise a dependence of Kelvin–Helmholtz rollers on the groove shape (§ 4.2) and quan-
tify the contribution of Kelvin–Helmholtz rollers in spectral space across distances from the
wall for six different riblet geometries (§ 4.4).

In order to study the drag characteristics of a broad range of riblet cross sections and
sizes, we conduct DNS in minimal-span channels, which reduce the computational cost
in exchange for unphysical results towards the top of the domain. Minimal-span channels
have previously been used to investigate the flow over generic roughness [30], but Kelvin–
Helmholtz rollers, having a large spanwise extent [15], may pose a unique challenge for
spanwise narrow domains. In § 3, we therefore rigorously investigate the velocity spectrum
at different scales, wall-normal distances and for varying riblet geometries, to determine the
limitations of minimal-span channels for riblet flows.

2 Numerical setup of minimal-span channel flow

We investigate the turbulent flow over six different riblet shapes at various viscous-scaled
sizes (table 2) using DNS in minimal-span channels. We consider triangular riblets with
varying tip angle α = 30°,60°,90° (case names T3s+, T6s+, T9s+), asymmetric triangular
riblets with α = 63.4° (ATs+, sketched in table 2), trapezoidal riblets with α = 30° (TAs+),
and blade riblets with a spacing-to-thickness ratio s/t = 5 (BLs+). The simulations for two
large triangular riblets (T321 and T950) are repeated in channels of varying width to study
minimal-span channel effects on the flow. The case T950 is further repeated with different
mesh resolutions to verify results. Domain and simulation parameters for all corresponding
smooth-wall flows are given in table 2.

We employ the incompressible second-order accurate finite volume DNS solver Cliff by
Cascade Technologies Inc. [19,20] to solve the Navier–Stokes equations and the transport
equation of a passive scalar θ that can be interpreted as temperature fluctuation

∂u
∂ t

+∇⋅(uu) = − 1
ρ
∇p+ν∇2u− 1

ρ
dP
dx

ex, (1)

∇⋅u = 0, (2)

∂θ
∂ t

+∇⋅(uθ) = νθ∇2θ −u
dΘ
dx

. (3)

The velocity u has components u, v and w in the streamwise (x), spanwise (y) and wall-
normal (z) directions respectively and t denotes time. We solve for the x-y-periodic com-
ponent of pressure p, while the constant mean dP/dx drives the flow in the streamwise
direction along the unit vector ex. The spanwise-averaged channel-depth is δ and there-
fore, the spatially and temporally averaged wall-shear stress per unit plan area integrates to
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Case s+ k+ `+g α ∆x+ ∆y+ ns ∆z+ ∆ t+

(×103) L+x L+y δ+ δ ′+ Lt uτ/δ ∆U+
±ζ+ ε′+

(×103)

Symmetric triangular

ℓ
2
gℓ
2
g α

s

k

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎩

T310 10.1 18.8 9.75 30.0° 6.0 0.057−1.5 29 0.033−7.0 15.8 1027 252 395.0 386.3 69.3 −0.77±0.12 6.1
T321 21.1 39.4 20.4 30.0° 6.0 0.12−3.2 29 0.023−6.9 15.8 1027 253 395.0 376.9 65.0 +0.83±0.12 5.4
T321W 21.1 39.4 20.4 30.0° 6.0 0.12−3.2 29 0.023−6.9 15.8 1027 443 395.0 376.9 25.8 +1.05±0.19 4.6
T333 33.3 62.2 32.2 30.0° 6.0 0.83−3.4 41 0.20−8.5 25.0 2000 600 1000.0 971.4 19.1 +2.75±0.10 8.4

T615 14.7 12.7 9.68 60.0° 6.0 0.083−2.2 29 0.041−7.0 31.6 1027 250 395.0 390.0 91.1 −0.82±0.10 3.3
T635 35.0 30.3 23.0 60.0° 6.0 0.16−4.9 33 0.014−4.7 23.7 1027 245 395.0 383.1 93.5 +0.64±0.10 4.1

T919 19.2 9.6 9.60 90.0° 6.0 0.11−2.9 29 0.047−7.1 47.4 1027 250 395.0 392.2 127 −0.61±0.08 4.7
T950W 50.0 25.0 25.0 90.0° 6.0 0.30−7.1 33 0.029−7.0 47.4 1027 450 395.0 387.8 93.7 +0.79±0.10 2.5
T950 50.0 25.0 25.0 90.0° 6.0 0.30−7.1 33 0.029−7.0 47.4 1027 250 395.0 387.8 95.0 +0.78±0.10 7.8
T950NF 50.0 25.0 25.0 90.0° 4.0 0.19−6.2 43 0.015−3.6 39.5 1027 150 395.0 387.8 124 +0.54±0.11 3.9
T950N 50.0 25.0 25.0 90.0° 6.0 0.30−7.1 33 0.029−7.0 47.4 1027 150 395.0 387.8 177 +0.56±0.09 5.4
T950NC 50.0 25.0 25.0 90.0° 8.0 0.46−8.1 25 0.045−9.3 98.8 1027 150 395.0 387.8 345 +0.54±0.07 5.2
T950NVC 50.0 25.0 25.0 90.0° 11.9 0.65−8.9 21 0.083−14 158 1027 150 395.0 387.8 523 +0.56±0.05 5.9

Asymmetric triangular

ℓ
2
gℓ
2
g α

s

k

⎧
⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪
⎩

AT15 14.7 7.4 7.36 63.4° 6.5 0.23−2.0 26 0.40−5.8 47.4 1027 250 395.0 392.6 45.4 −0.49±0.14 3.1
AT19 19.2 9.6 9.62 63.4° 6.5 0.37−1.9 28 0.40−5.8 47.4 1027 250 395.0 391.9 121 −0.50±0.09 3.4
AT31 31.3 15.6 15.6 63.4° 6.5 0.15−4.3 55 0.40−5.7 47.4 1027 250 395.0 390.0 47.5 −0.32±0.14 7.2
AT42 41.7 20.8 20.8 63.4° 6.5 0.45−2.7 46 0.40−4.9 47.4 1027 250 395.0 388.3 117 +0.22±0.09 2.4
AT50 50.0 25.0 25.0 63.4° 6.5 0.32−1.7 63 0.40−4.4 47.4 1027 250 395.0 387.0 60.3 +0.49±0.12 1.6

Trapezoidal

ℓ
2
gℓ
2
g α

s

k

⎧
⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪
⎩

TA18 17.9 8.9 11.8 30.0° 6.0 0.27−3.0 27 0.31−7.0 47.4 2054 250 395.0 389.6 50.1 −1.06±0.10 4.2
TA31 31.3 15.6 20.6 30.0° 6.0 0.47−2.4 27 0.31−7.0 47.4 2054 250 395.0 385.5 46.7 +0.44±0.10 3.4
TA36 36.5 18.2 24.0 30.0° 6.0 0.55−2.9 27 0.31−7.1 47.4 2054 255 395.0 383.9 49.2 +0.81±0.10 4.5
TA50 50.0 25.0 32.9 30.0° 6.0 0.76−3.9 27 0.31−7.1 47.4 2054 250 395.0 379.8 45.7 +1.76±0.10 5.9
TA63 62.5 31.3 41.1 30.0° 6.0 0.95−4.9 27 0.31−7.1 47.4 2054 250 395.0 376.0 46.7 +2.47±0.10 7.3

Blade s/t

ℓ
2
gℓ
2
g

s

k

t ⎧
⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪
⎩

BL20 20.3 10.1 12.8 5.0 6.0 0.51−2.1 41 0.27−6.1 47.4 1027 264 395.0 388.5 94.6 −0.60±0.10 3.0
BL33 33.3 16.7 21.1 5.0 6.0 0.83−3.4 41 0.28−6.3 47.4 1027 266 395.0 384.4 94.6 +0.58±0.10 3.0
BL39 39.0 19.5 24.7 5.0 6.0 0.97−3.9 41 0.29−6.5 47.4 1027 273 395.0 382.5 93.3 +1.19±0.10 3.1
BL49 49.0 24.5 31.0 5.0 6.0 1.2−4.9 41 0.30−6.7 47.4 1027 294 395.0 379.3 118 +1.84±0.09 2.9

z

y x

Table 1 Surface parameters, spacings of the numerical mesh ∆+ and domain sizes L+. Close to the wall, spanwise meshes have ns nodes per riblet period. We measure the
half-channel height δ+ from the mean riblet height and δ ′+ from the virtual origin. Statistics are averaged in the time interval Lt to obtain an uncertainty in ∆U+ given by ζ+
and the convergence error ε ′+ given by equation (9). W indicates a wide, and N a narrow channel. F stands for a fine mesh and (V)C for (very) coarse.
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Case ∆x+ ∆y+ ∆z+ ∆ t+

(×103) L+x L+y δ+ Lt uτ/δ ε′+
(×103)

SFull 6.5 3.2 0.27−4.4 83.0 2482 1241 395.0 34.9 2.3
SW 6.0 3.0 0.21−4.7 79.0 1027 450 395.0 95.2 3.7
S 6.0 3.0 0.21−4.7 79.0 1027 250 395.0 173 3.6
SNF 4.0 2.3 0.21−4.7 86.9 1027 150 395.0 152 4.1
SN 6.0 3.0 0.31−7.1 98.8 1027 150 395.0 533 4.5
SNC 8.0 3.9 0.42−9.5 158 1027 150 395.0 350 5.9
SNVC 11.9 4.7 0.64−14 296 1027 150 395.0 402 11
SH 6.0 3.0 0.32−8.8 80.0 2000 600 1000.0 58.5 3.3

Table 2 Smooth wall simulation parameters: spacings of the numerical mesh ∆+, domain sizes L+ and half-
channel height δ+. Statistics are averaged in the time interval Lt to obtain the convergence error ε ′+ given
by (9). W indicates a wide, and N a narrow channel. F stands for a fine mesh and (V)C for (very) coarse.

τw/ρ = −(δ/ρ) dP/dx for smooth-wall and riblet cases alike. Analogously, the temperature
field has an x-y-periodic component θ and mean Θ . The spatially and temporally aver-
aged heat flux into the wall is thus given by qw/(ρcp) = −δUbulk dΘ/dx, where Ubulk is the
volume-averaged streamwise velocity and cp is the specific heat at constant pressure. In our
setup, dΘ/dx < 0 such that the wall serves as a heat sink in analogy to momentum.

Computational domains (figure 1b) are rectangular open channels with a symmetry
boundary condition at the top such that the domain height equals the half-channel height
δ . The no-slip bottom wall is either smooth for reference or it has streamwise aligned ri-
blets. For the passive scalar, we set the isothermal boundary condition on the fluctuation
θ = 0 at the wall. Periodicity is applied in both horizontal directions x and y. All quantities
are nondimensionalised using the friction velocity uτ, half-channel height δ , kinematic vis-
cosity ν and friction temperature θτ = qw/(ρcpuτ). The friction Reynolds number is fixed
at Reτ = 395 and for one case Reτ = 1000. The Prandtl number Pr = 0.7 sets the thermal
conductivity (scalar diffusivity) νθ = ν/Pr.

2.1 Definition of turbulent fluctuations

We define turbulent fluctuations of any given scalar field φ ∈ {u,v,w, p,θ} as φ ′(x,y,z,t) =
φ(x,y,z,t)−φ xrt(y,z), i.e. as deviations from the streamwise (x), riblet-period (r) and tem-
poral (t) average φ xrt . We use the overbar to denote plane averages across x, y and t at a given
height above the riblet tips z ≳ zt and apply it to products of two fluctuating quantities φ ′ψ ′
(such as Reynolds shear stress u′w′). We use the common notation U = u for streamwise ve-
locity. Two-dimensional energy (co)spectral density Eφψ is calculated in wall-parallel planes
above the riblet tips for streamwise wavelengths λx and spanwise wavelengths λy. We collect
spectral energy at the positive wavelengths such that their energy integrates to the variance

∫
∞

0
∫

∞

0
Eφψ dλxdλy = φ ′ψ ′(z). (4)

Accounting for energy from the negative wavelengths at 0 < (λx,λy) <∞ is justified because
of the symmetry Eφψ(λx,λy)=Eφψ(−λx,−λy) and because statistically, Eφψ(λx,λy)≈Eφψ(−λx,λy)=
Eφψ(λx,−λy) for real signals φ and ψ . Integrating in only one direction, we define

Ex
φψ(λx,z) = ∫

∞

0
Eφψ dλy and Ey

φψ(λy,z) = ∫
∞

0
Eφψ dλx. (5)

When the integration bound is at a finite wavelength, it is important to remember that dis-
crete wavenumbers ki ∈ kx are centred in their interval, i.e. E i = ∫

ki+∆kx/2
ki−∆kx/2 Ex.
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Fig. 1 Computational domain of minimal-span open channels (b) and representative near-wall meshes for
the four types of riblets in a cross section spanning one riblet period (a,c–e). The half-channel height δ is
measured from the mean-height z = zm and δ ′ from the virtual origin z = 0 with riblet tips at height z = zt = `T .

2.2 Origin of the wall-normal coordinate

We need to define a virtual origin for the wall-normal coordinate in order to measure the
drag-change by ∆U+ [13], i.e. by the shift in the velocity profile between smooth wall and
riblet flow at matched heights. The outer layers of flows over smooth walls and riblets are
similar [38] and therefore the latter perceive an equivalent smooth wall at the virtual origin,
located `T below the riblet crest [27] (figure 1a). We determine `T for small riblets near
the size of lowest drag by matching profiles of turbulent Reynolds shear stress u′w′

+
in the

point of largest slope to that of a smooth wall. However, eddies above larger riblets might
not perceive a homogeneous boundary that we could use to define the virtual origin [13]. For
consistency, we therefore fix `T /k for each riblet shape and extrapolate the location of the
virtual origin from the small riblets of the same shape. The half-channel height measured
from the virtual origin is δ ′ < δ (figure 1(a) and table 2).
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2.3 Minimal-span channels

We employ minimal-span channels for all riblet flows and corresponding smooth-wall refer-
ences. Minimal-span channels were first used by Jiménez & Moin [24] and Flores & Jiménez
[10] in numerical experiments on smooth walls and later employed as an economical alterna-
tive to costly full-span channel flow DNS for roughness [8]. By definition, the width Ly < δ
of minimal-span channels is small enough to constrict large eddies in the flow. This leads
to a significantly altered flow field in the outer layer, but below a critical height z+c , average
velocities and turbulent statistics match experimental results [24].

The study of smooth-wall pipe flow by Chin et al. [6] suggests that a streamwise do-
main length L+x ≳ 1000 is necessary to resolve the near-wall streaks and avoid affecting the
mean flow. For channel sizes beyond that length, the largest structures are nevertheless not
fully resolved and effectively infinitely long in the periodic domain. Such restrictions of the
longest structures however do not affect the resolved scales [26]. In the spanwise direction,
at least one streak needs to be resolved in a box of width L+y ≳ 100 for the flow to match ex-
perimental data below z+c [24]. The critical height above which results are unphysical scales
with the domain width as z+c ≈ 0.3L+y [10] or less conservatively z+c ≈ 0.4L+y [22]. Chung et
al. [8] introduce modelled roughness on the wall and also observe z+c ≈ 0.4L+y . Roughness
only alters the near-wall region of the flow in the roughness sublayer and outer-layer sim-
ilarity is presumed for flows over different surfaces [38]. In order to capture all roughness
effects, we therefore need to choose the channel width such that z+c exceeds the height of
the roughness sublayer. Consistent with sinusoidal roughness [5], we expect this layer to
extend to a height 0.5s+, that depends on the lateral riblet spacing s+. A systematic analysis
of constraints posed by the minimal-span channel is given by MacDonald et al. [30], who
vary the streamwise and spanwise extent of numerical domains with modelled roughness to
identify and compile limitations for the domain size. For streamwise uniform riblets, these
come to

L+x ≳max(3L+y ,1000) , (6)

z+c = 0.4L+y ≳ 0.5s+. (7)

Channels of the present study have a width L+y ≈ 250 at Reτ = 395 and L+y = 600 at
Reτ = 1000. Therefore, the critical heights are z+c = 0.4L+y ≈ 100 and z+c = 240 respectively,
both of which are inside the logarithmic layer and above the roughness sublayer (z+c > 0.5s+

in table 2). Some simulations are repeated in channels with L+y = 150 and L+y ≈ 450 (table 2)
to analyse effects of the channel width. This enables us to verify that the minimal-span
channel constraints found for flow over smooth walls and uniform roughness are valid for
the specific case of fully resolved 2D riblets, which differ from traditional roughness in
that they do not experience pressure drag. Particularly, since we expect Kelvin–Helmholtz
rollers in some of these flows that are not present over many other types of rough surfaces,
we verify in § 3.2 that the minimal domains resolve all relevant fluctuations.

Computational grids are stretched in the wall-normal direction using the tanh distri-
bution suggested by Moin & Kim [31] with smallest spacings near the riblet tips. Cross-
sections of the meshes close to the riblet surfaces are shown in figure 1 with details given in
table 2. Meshes for asymmetric triangular riblets (figure 1e) are refined using Adapt by Cas-
cade Technologies Inc., which iteratively subdivides cells in different mesh zones (distances
from the wall) to meet prescribed requirements for the maximum node spacing in the span-
wise and wall-normal direction. Specifically, we set maximum spacings ∆y+m = {1.5,3,4,5}
and ∆z+m = {0.9,2,4,6} for heights z+− z+t ≲ {16,40,80} and above respectively.
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2.4 Runtime and statistical convergence

We report the statistical uncertainty in ∆U+ given by ζ+ for all riblet cases in table 2. In
minimal-span channels, ζ+ can be estimated based on an eddy-counting approach over the
averaging time Lt [30]

Lt
uτ
δ

≈ ( 91.4
ζ+z+c

)
2

7.5zc

Lx

2.5zc

Ly

T+
b

L+z
. (8)

If z+c is in the log-layer of a minimal channel, the bursting period T+
b = 6z+c [30]. Along with

Ly = 2.5zc, the runtime required to converge statistics in (8) becomes independent of Ly.
Therefore, a further reduction of the spanwise extent of minimal channels (that nevertheless
keeps z+c = 0.4L+y in the log-layer) reduces the number of cells in the mesh without affecting
the runtime, which saves computational costs. In full-span channels, Lt depends on both Lx
and Ly and the required runtime is typically much shorter than in minimal-span channels.
The larger mesh in x and y however makes the overall computational cost for a full-span
channel significantly higher than for a simulation in a minimal channel.

As a measure of statistical convergence, we follow the suggestion by Vinuesa et al. [39]
and check (table 2) that the x-y-t-averaged total stress above the height of the riblet tips z+t
is close to linear

ε ′+ = ( 1
δ ′+− z+t

∫
δ ′+

z+t
ε+2dz+)

1/2
, where ε+ = δ ′+− z+

δ+
+(u−u)(w−w)

+
− dU+

dz+
. (9)

2.5 Mesh convergence study

The simulation for the narrow version of large blunt triangular riblets (T950N) is repeated
on two coarser meshes as well as a finer mesh (table 2). The number of mesh nodes in each
direction are (nx,ny,nz) = (257,127,193),(172,97,129),(129,73,97),(87,61,65), which
means the numbers of nodes spanning one riblet period with s+ = 50 are ns = 43,33,25,21
(table 2). With fixed domain sizes, the streamwise mesh spacings are ∆x+ ≈ 4,6,8,12. Our
regularly used spacing for all riblet and smooth-wall cases is ∆x+ ≈ 6 (table 2), which is
finer than ∆x+ = 10 used by Moser et al. [32] at Reτ = 395 for a smooth wall DNS with
a spectral code. The wall-normal and spanwise grids close to our riblets are likewise finer
than for their smooth wall, because the mesh resolution in these directions is dictated by the
riblet geometry rather than the viscous length scale. All four cases have a smaller spanwise
extent (L+y = 150) than our usual channels (L+y ≈ 250) with minimal-span effects discussed in
§ 3.

The streamwise spectrum of streamwise velocity fluctuations against distance from the
wall shows collapsing contour lines for all four meshes (figure 2a). Minor differences be-
come visible for Reynolds stresses (figure 2b) at heights z+−z+t ≳ 20. Here, the two coarsest
meshes have higher fluctuation energy, because the smallest structures are not resolved by
the mesh. This directly affects the mean streamwise velocity and therefore profiles of the
roughness function U+

s −U+ in figure 2(c), that compares the smooth wall velocity profile
(subscript s) to that of riblets. Below z+c , the roughness functions on different meshes are
close, but they diverge distinctly towards the top of the domain. Velocities at z+c , where we
measure the drag-change ∆U+ =U+

s (z+c )−U+(z+c ), are shown in the inset for both the riblet
cases (◾) and smooth walls with corresponding mesh quality (●). The difference, ∆U+, is
almost independent of the mesh quality, provided that the resolution in the streamwise and
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Fig. 2 The solution on coarse meshes deviates, but further refining the computational mesh does not
change our results based on these flows in a narrow channel (L+y = 150) with different mesh qualities
(T950NF, T950N, T950NC, T950NVC). Premultiplied streamwise spectra with contours from light to dark at
k+x Ex+

uu = (0.5,0.75,1,1.25,1.5) in (a) and k+x Ex+
uw = −(0.05,0.1,0.15,0.2,0.25) in (b). The roughness func-

tion in (c) with error bars for ∆U+ measured at z+c compares to smooth-wall simulations of matched spanwise
extent and mesh resolution (table 2). The inset shows U+

s (z
+
c ) (●) for the smooth wall and U+

(z+c ) (◾) for
riblet flow as a function of the streamwise mesh spacing ∆x+. (d) Reynolds stresses in the spectral region that
can be occupied by Kelvin–Helmholtz rollers ([14] and § 4.3).

wall-normal direction is similar for both flow cases. We therefore maintain ∆x+ ≈ 6 for all
cases and ∆z+ ≈ 0.3 around the height of the riblet crests and about `+T above the smooth
wall. If we were to use the smooth-wall spanwise resolution for riblets, the geometry would
not be resolved properly as we can appreciate by comparing the finest smooth-wall SNF
(L+y /ny = 2.3, ∆x+ ≈ 4) and coarsest riblet mesh T950NVC (L+y /ny = 2.5, ∆x+ ≈ 12). The
∆U+ between those mismatched meshes with similar L+y /ny would be close to zero ( ● - ◾
in the inset of figure 2c), which is unphysical for riblets with `+g = 25. The average spanwise
spacing around riblets is therefore significantly smaller than that of the smooth-wall mesh
and ns ≳ 26 in table 2.

Reynolds stresses that may be affected by Kelvin–Helmholtz rollers (details in § 4.3) are
shown in figure 2(d). The two coarse meshes have increased energy in this spectral region,
even though the considered wavelengths are greater than the mesh spacing (65 ≲ λ+

x ≲ 290
and λ+

y ≳ 250). Profiles of Reynolds stresses in that spectral region −u′w′
+
KH for the two

finer meshes align, even above z+c . This gives us confidence that the regular mesh resolution,
which we also use for the main cases of this study (those with L+y ≈ 250 in table 2), is
sufficient to capture the effects of Kelvin–Helmholtz rollers on the flow field over riblets.
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3 The minimal-span channel for flow over riblets

In this section, we verify that constricting the flow in the spanwise direction unphysically
alters the flow in the outer layer, while the near-wall region remains unchanged [30]. Figure 3
shows wall-normal velocity fluctuations 5 viscous units above riblets in channels of three
different widths. At this height, the flow fields in all three domains have qualitatively the
same streamwise-aligned features, because only flow structures above certain sizes and wall-
normal distances are affected by the spanwise constraint. We will quantify these effects in
spectral space after first considering implications for the mean streamwise velocity.

3.1 Mean streamwise velocity in minimal-span channels with riblets

Constricting the flow in the spanwise direction leads to unphysically high streamwise ve-
locity for heights z+ > z+c = 0.4L+y in rough-wall channels, because the largest structures that
would otherwise carry momentum are not resolved [8]. This estimate for z+c agrees well with
profiles of mean streamwise velocity shown in figure 4(a) for triangular riblets and smooth
walls in numerical domains of three different widths. The viscous-scaled spanwise extents
are L+y = {150,250,450}. Increased velocities above z+c are clearly visible for the narrow
and medium width channels. The smooth-wall profile from the wide channel with spanwise
extent L+y = 450 is almost identical to that from a full-span channel with L+y = 1241 except for
the very top of the wake region, because z+c = 180 is fairly close to δ+ = 395 on a log-scale.
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Fig. 3 The flow close to the wall is not affected by the spanwise constraint: instantaneous wall-normal
velocity w+ in a plane 5 viscous units above the crest of triangular riblets with opening angle α = 90° in
channels of different spanwise extent. (a) wide T950W with L+y = 450, (b) our regular width T950 with
L+y = 250 and (c) narrow T950N with L+y = 150.
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Fig. 4 Minimal channels have unphysically high velocity only above the height z+c : (a) velocity profiles of
smooth-walls (SW, S, SN) and triangular riblets (T950W, T950, T950N) in domains of three different widths.
A profile for a smooth-wall full-span channel (SFull) with L+y = 1241 is shown additionally for reference. (b)
The Hama roughness function U+

s −U+ for the three cases. Vertical lines mark the height z+c = 0.4L+y beyond
which results are unphysical and error bars mark the statistical uncertainty ±ζ+ as defined in (8).

We calculate the roughness function from the difference between the smooth-wall ref-
erence (subscript s) and the riblet profile at matched spanwise extent L+y (figure 4b). The
statistical uncertainty ζ+ (found through equation 8) is marked by error bars at the height z+c ,
where we measure the drag-change ∆U+. These riblets with groove size `+g = 25 (table 2) are
well within the drag-increasing regime as ∆U+ > 0. For the two widest minimal-span chan-
nels, U+

s −U+ collapses within the statistical uncertainty such that the measured drag-change
is the same regardless of the domain size. The very narrow channel with L+y = 150 has a no-
ticeably different roughness function (figure 4b) and the drag-change ∆U+ measured at its
z+c deviates a bit from the ∆U+ found in wider channels (table 2). We therefore use L+y ≈ 250
to study the flow over riblets and thus avoid minimal-span effects on the drag-change.

3.2 Velocity fluctuations in minimal-span channels with riblets

Our region of interest for this study is close to the wall, where roughness affects the flow.
Kelvin–Helmholtz rollers can appear at heights ≲ 20 viscous units above the riblets [14]
and their analysis requires an accurate representation of turbulent flow structures. However,
above a certain height in minimal-span channels, the distribution of velocity fluctuations
across spectral space is affected by the confined domain. That critical height for fluctuations
depends on the size of considered structures as well as L+y and it is generally lower than the
z+c for the mean-flow [22,30].

3.2.1 Smooth walls and triangular riblets in channels with L+y = {150,250,450}

Unphysically amplified velocity fluctuations are evident in the streamwise spectra above
z+c in our narrow domains with both smooth-walls and riblets (figure 5a,b). The same am-
plification is observed by Hwang [22] (their figure 6b) and MacDonald et al. [30] (their
figure 4e–h). Closer to the wall however, fluctuations become progressively less dependent
on the channel width.
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Fig. 5 Velocity fluctuations in minimal channels carry unphysically high energy above the height z+c :
triangular riblets (α = 90°) with three different channel widths (left, T950W, T950, T950N) and corre-
sponding smooth walls (right, SW, S, SN). Premultiplied streamwise (a, b) and spanwise (c, d) spectra
of streamwise velocity against distance from the riblet crest or wall with contours from light to dark at
k+x,yEx,y+

uu = (0.5,1,1.5,2,2.5).

Effects of the narrow domain on spanwise spectra are particularly pronounced in fig-
ure 5(c,d), where wide fluctuations with large λ+

y have increased energy as the domain be-
comes more narrow. Structures wider than L+y appear as spanwise uniform and their energy
consequently accumulates in the mode with λ+

y =∞, which is not visible in these spec-
trograms. As L+y reduces, more fluctuations would be wider than the channel and therefore
appear in the infinite wavelength. A side effect of this restriction appears to be an increase of
energy in wavelengths just shorter than L+y . The width of structures affected by this amplifi-
cation varies with distance from the wall, as also seen in [30]. Taking the widest channel as
a reference, the lowest-energy contour line diverges roughly at z+c for the two more narrow
channels. Higher-energy contour lines diverge closer to the wall, but also at larger λ+

y . For
the medium-width channel, all resolved spanwise wavelengths appear to show unrestricted
turbulence below z+ − z+t ≈ 30. For the narrow channel however this is not achieved even at
the highest-energy contour level suggesting that energy in the widest structures is overesti-
mated down to some height closer to the riblets or smooth wall respectively.

Figure 6 shows that the region even closer to the wall, only 5 viscous units above the
riblets or smooth wall, is not affected by any of our narrow domains. At this height, all
contour lines agree across the resolved scales regardless of L+y , including for L+y = 150,
because energy at larger wavelengths accumulates at λ+

y =∞.
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Fig. 6 Velocity fluctuations close to the wall are not affected by the spanwise constraint: triangular riblets
(α = 90°) with three different channel widths (left, T950W, T950, T950N) and corresponding smooth walls
(right, SW, S, SN). Premultiplied 2D spectra in a plane 5 viscous units above the crest with contours at
fractions of turbulent fluctuations k+x k+y E+φψ/(φ ′ψ ′)+ = (0.02,0.08,0.14,0.2,0.26). In (a, b) for uw and in
(c, d) for ww.

3.2.2 Blade riblets in minimal-span and full-span channels

In figure 7 we further compare spectra of two blade riblet cases in minimal-span channels to
similar reference cases from Garcı́a-Mayoral & Jiménez [15] in full-span channels to verify
that we accurately capture all relevant fluctuations. The reference cases have a spacing-
to-thickness ratio s/t = 4 and Reτ ≈ 550, while for the blade riblets of this study s/t = 5
and Reτ = 395, but the riblet sizes are `+g ≈ 13 and `+g ≈ 21 for both data sets. The most
notable difference is the channel width. The reference full-span channels are about 9 to 10
times wider in viscous units than our minimal-span channels. The streamwise and spanwise
spectra shown against distance from the wall in figure 7(a–d) match closely across riblets of
a given size, except for the minimal-span channel effects discussed above for the triangular
riblets and smooth walls.

Two-dimensional spectra at a height 5 viscous units above the crest, that can be influ-
enced by Kelvin–Helmholtz rollers, are shown in figure 7(e–h). The spectra are normalised
by their respective turbulent variance at that height and show matching trends regardless of
the channel size. Effects of the different blade width are noticeable at this height close to the
crest, and presumably explain the small discrepancies between the energy levels (contour
lines). However, these misalignments between contour lines for different blade widths are
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Fig. 7 Comparing velocity spectra for blade riblets in minimal-span channels to reference data in full-span
channels. On the left (a,b,e,f ) are small riblets with `+g ≈ 13 (BL20 with L+y = 264, Reτ = 395, s/t = 5 compared
to 13L from [15] with L+y = 2603, Reτ ≈ 550, s/t = 4). On the right (c,d,g,h) are large riblets with `+g ≈ 21
(BL34 with L+y = 266, Reτ = 395, s/t = 5 compared to 20L from [15] with L+y = 2396, Reτ ≈ 550, s/t = 4). The
premultiplied streamwise and spanwise spectra of streamwise velocity in (a–d) are shown against distance
from the riblet crest with contours from light to dark at k+x,yEx,y+

uu = (0.5,1,1.5,2,2.5). The premultiplied
2D spectra of uw in (e,g) and of ww in (f,h) are in a plane 5 viscous units above the crest with contours
at fractions of turbulent fluctuations k+x k+y E+φψ/(φ ′ψ ′)+ = (0.02,0.08,0.14,0.2,0.26). Boxes near the top
delimit the region of Kelvin–Helmholtz rollers ([14] and § 4.3).

small compared to the changes with riblet size (figure 7e,g and figure 7f,h). The minimal-
span channels of the present study (grey contours in figure 7) accurately capture fluctuations
of resolved wavelengths close to the wall, as also seen for triangular riblets and smooth
walls in figure 6. The agreement across channels of different width is most readily visible
in figure 7(h) for wall-normal velocity fluctuations above the large riblets, that are known
to support the Kelvin–Helmholtz instability [15]. The spectral region of Kelvin–Helmholtz
rollers (65≳ λ+

x ≳ 290 and λ+
y ≳ 250) is framed with a black box near the top of figure 7(e–h),

but these spectra are restricted to finite wavelength λ+
x ≲ L+x and λ+

y ≲ L+y . In the following,
we therefore selectively integrate velocity spectra in channels of different width.

3.2.3 Spectral region of Kelvin–Helmholtz rollers in channels of different widths

In figure 8(b,d,f,h), we show spanwise spectra of Reynolds shear stress integrated in λ+
x only

across wavelengths that may be affected by the Kelvin–Helmholtz instability, 65 ≳ λ+
x ≳ 290

[14]. Narrow domains have a low spectral resolution at large λ+
y , but wherever a data point

is available, it matches those from wider channels. The sharp triangular riblets with α = 30°
in figure 8(f ) have more energy in those streamwise wavelengths than the smooth wall in
figure 8(b) or the blunt triangular riblets with α = 90° in figure 8(d). Nevertheless, for all of
them, the energy at large λ+

y matches closely between channels of different width. In fig-
ure 8(h) we further compare the blade riblets to slightly thicker blades with almost matching
`+g in exceptionally wide full-span channels by Garcı́a-Mayoral & Jiménez [15] and also
observe close agreement of the energy across all resolved wavelengths.
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Fig. 8 Minimal channels capture the energy in the spectral region of Kelvin–Helmholtz rollers: premultiplied
streamwise (left) and spanwise (right) spectra of Reynolds shear stress integrated only over the shaded wave-
lengths that are affected by the Kelvin–Helmholtz instability 65 ≲ λ+x ≲ 290 and λ+y ≳ 250 ([14] and § 4.3).
In a plane 5 viscous units above smooth walls (a, b), above the crest of triangular riblets T950W, T950,
T950N (α = 90°, `+g = 25.0 in c, d), triangular riblets T321W, T321 (α = 30°, `+g = 20.4 in e, f ) and blade
riblets 20L (s/t = 4, `+g = 20.4) in a full-span channel [15] and BL33 (s/t = 5, `+g = 21.1) in our minimal-span
channel (g, h).
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The spanwise extent of Kelvin–Helmholtz rollers is up to 1000–1500 viscous units in
the flow over blade riblets [15], which means a large portion of their energy accumulates in
the spanwise-infinite wavelength of our simulations, which is not visible in the premultiplied
spectra of figure 8(b,d,f,h). In order to visualise energy in modes with λ+

y ≳ 250 including
λ+

y =∞, we integrate cospectra of Reynolds shear stress for the different channels across
λ+

y ≳ 250 in figure 8(a,c,e,g). Smooth wall flow at z+ = 5 has very little energy in these large
spanwise wavelengths, but the spectrum is the same for all four channel widths. In the case
with comparatively high energy at these large spanwise wavelengths in figure 8(e), the spec-
trum likewise matches within the statistical uncertainty for both domain widths. Even the
narrow domains with L+y = 150 in figure 8(a,c), that end short of the integration bound, have
the same spectrum, because the energy is contained in the spanwise-infinite wavelength.
(The integration in discrete wavenumber space covers all of mode 0 with λ+

y =∞ and 10 %
of mode 1 with λ+

y = 150.) In figure 8(g), we integrate the spectrum for our blade riblets
over only two spanwise modes (L+y = 266) and the spectrum of the reference case [15] with a
similar geometry over 11 modes (L+y = 2396), but the resulting streamwise spectra for large
spanwise wavelengths nevertheless match closely.

In summary, we observe in figures 4 and 5 that if L+y ≳ 250, turbulence in roughly the first
30 viscous units above the riblet crest is not affected by the channel width and both the mean
and the turbulent flow that we simulate in that region (including at large λ+

y ) reflect the true
physics. Furthermore, figures 6 and 8 illustrate that 5 viscous units above the wall or riblet
crest, Reynolds stresses and wall-normal velocity in minimal-span channels with L+y ≳ 150
closely match those in wider domains. Energy at wavelengths λ+

y > L+y accumulates at the
infinite wavelength such that fluctuations of large structures are accounted for even in narrow
domains (figure 8). Our minimal-span channels with L+y ≈ 250 (table 2) therefore allow us to
investigate fluctuations due to Kelvin–Helmholtz rollers. Even more narrow domains (e.g.
with L+y = 150) also accurately capture energy in wavelengths that are affected by the Kelvin–
Helmholtz instability (figure 8), but the separation from other near-wall turbulence is cleaner
if L+y ≳ 250 as we will demonstrate in § 4.3.

4 The Kelvin–Helmholtz instability above riblets

4.1 Roughness function of riblets

Our riblet DNS data set spans six shapes and various viscous-scaled sizes, which means that
drag characteristics vary as shown in figure 9, where we compare the streamwise velocity
to smooth-wall flow in channels of matched width, ∆U+ =U+

s (z+c )−U+(z+c ). Measures of
the drag-change ∆U+ by blade riblets (∎◻) are slightly lower than for the reference data of
thicker blades (∎◻) [15], which is consistent with Stokes flow that predicts the lowest ∆U+

for infinitely thin blades [28]. We further converted various reference data from DR to ∆U+

for comparison. The blunt trapezoidal riblets from Gatti et al. [16] with α = 53.5° (☀☆) have
a higher drag at matched `+g than our trapezoidal riblets with α = 30° (☀☆). Around the size
of optimum drag reduction at `+g ≈ 11, drag curves of various riblet shapes scale with `+g
[14]. Nevertheless, our triangular riblets (▼▽, ◀◁) have a lower minimum drag than measured
experimentally by Bechert et al. [3] (▼▽, ◀◁). The trapezoidal riblets show the same trend
of lower drag in numerical compared to experimental studies: our DNS (☀☆) and the wall-
resolved large eddy simulations by Bannier et al. [1] (☀☆) of trapezoidal riblets with α = 30°
have a lower drag at the optimum than the experimental data from Gatti et al. [16] (☀☆) for
trapezoidal riblets with α = 53.5°. The lower drag of the sharper trapezoidal riblets is only
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Fig. 9 Drag curves for different riblet shapes with experimental (☀☆ [16], ▼▽ [3], ◀◁ [3]) and numer-
ical (DNS: ∎◻ [15], LES: ☀☆ [1]) reference data. Experimental channel flow data are converted from
∆τw/τw,smooth to ∆U+

= −DR((2c f ,smooth)
−1/2

+1/(2κ)) with c f = 2/U+2
bulk at matched Rebulk [3]. The term

1/(2κ) is omitted for data from [3] as suggested in [12]. The boundary layer LES data are converted to
∆U+

= −DR(2C f ,smooth)
−1/2 with C f = 2/U+2

δ at matched U+
δ [37]. Direct measurements of ∆U+ for the

present data are shown by coloured symbols with lines. The straight lines starting at `+g = 0 indicate the vis-
cous prediction of ∆U+ calculated from Stokes flow as per [28], for trapezoidal riblets with α = 53.5° ( ,
as [16]) and α = 30° ( , as [1] and our data).

partially explained by Stokes flow [28], which predicts a small reduction of ∆U+ when the
tip angle reduces from α = 53.5° to α = 30° (straight lines starting at `+g = 0 in figure 9).

Garcı́a-Mayoral & Jiménez [14] demonstrated for blade riblets, that Kelvin–Helmholtz
rollers appear in the flow ≲ 20 viscous units above the crest for groove sizes `+g ≳ 11, i.e. for
larger than optimal riblets. Fourteen of our cases have a size above that threshold in order to
analyse the effects of Kelvin–Helmholtz rollers on the flow field and therefore on the drag
characteristics of different riblet geometries.

4.2 Visualising Kelvin–Helmholtz rollers

We use the scalar θ , that represents temperature, to visualise perturbations in the fluid. Fluc-
tuations θ ′+ in a plane 5 viscous units above a smooth wall or small riblets (figure 10, left)
show long, nominally streamwise aligned, streaks of positive or negative fluctuations. For
some of the larger, drag-increasing riblets however spanwise coherent patches dominate the
flow field at that height (figure 10, right). This is most prominently visible in figure 10(c)
for the triangular riblets with α = 30°, where it suggests the presence of spanwise-coherent
Kelvin–Helmholtz rollers. The flow field of the blunt triangular riblets with α = 90° in fig-
ure 10(g) and the asymmetric riblets in figure 10(m) looks qualitatively similar to that of the
corresponding small riblets (figure 10(f,l) respectively), where no significant spanwise co-
herence is visible at this instance. These instantaneous flow visualisations therefore suggest
that the strength of Kelvin–Helmholtz rollers depends on the riblet shape.

Figure 11 shows isosurfaces of the passive scalar to visualize spanwise coherence in a
volume z+−z+t < 20, highlighting the striking dependence of the Kelvin–Helmholtz instabil-



18 S. Endrikat et al.

0

125

250
y
+

Smooth wall(a)

0

125

250

y
+

.T310, s+=10.1, ℓ+g =9.75
(b)

.T321, s+=21.1, ℓ+g =20.4
(c)

0

125

250

y
+

.T615, s+=14.7, ℓ+g =9.68
(d) .T635, s+=35.0, ℓ+g =23.0

(e)

0

125

250

y
+

.T919, s+=19.2, ℓ+g =9.60
(f ) .T950, s+=50.0, ℓ+g =25.0

(g)

0

125

250

y
+

.TA18, s+=17.9, ℓ+g =11.8
(h)

.TA36, s+=36.5, ℓ+g =24.0
(i)

0

125

250

y
+

.BL20, s+=20.3, ℓ+g =12.8
(j )

.BL39, s+=39.0, ℓ+g =24.7
(k)

0 500 1000

x+

0

125

250

y
+

.AT19, s+=19.2, ℓ+g =9.62
(l)

0 500 1000

x+

.AT50, s+=50.0, ℓ+g =25.0
(m)

Instantaneous θ′+

−3.5 −2.5 −1.5 −0.5 0.5 1.5 2.5 3.5

Fig. 10 Spanwise coherence due to Kelvin–Helmholtz rollers is visible for some of the large riblets: fluctu-
ations of the passive scalar (temperature) θ ′+ in the wall-parallel plane 5 viscous units above a smooth wall
(a) or riblet crest (b–m). Riblet cases on the left are close to their drag-reducing optimum size, while those
on the right side are large enough to be in the drag increasing regime (figure 9).

ity on the riblet cross-section. The two riblet geometries are the same as in figure 10(c,g),
except in wider domains with L+y ≈ 450. In combination with regions of negative streamwise
velocity in the groove of the large triangular riblets with α = 30° (blue in figure 11a), wave-
like structures become visible in the flow field, which match the description of a Kelvin–
Helmholtz instability (roughly spanwise coherent and with a streamwise spacing λ+

x ≈ 200).
Kelvin–Helmholtz rollers are absent above the blunt riblets with α = 90° in figure 11(b),
even though the riblet size `+g is similar for both cases and the domain size and Reτ are
matched.

In order to quantify the intensity of the Kelvin–Helmholtz instability and its relevance
in the flow field, we now apply a spectral filter to time-averaged fluctuating quantities.
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(a)

(b)

x+
y+

y+

Fig. 11 Flow visualisation for two drag-increasing riblets of similar size `+g but different shape. Kelvin–
Helmholtz rollers develop over the triangular riblets with tip angle α = 30° (a: T321W with `+g = 20.4), but
not over the riblets with α = 90° (b: T950W with `+g = 25). Both channels have a spanwise extent L+y ≈ 450.
The mean flow is aligned with the riblets from left to right. Regions of negative streamwise velocity (reversed
flow) inside the groove are shown in blue. An isosurface of the passive scalar θ+ = 3.5 above the riblet crest
is coloured by its height from transparent to black.

4.3 Identifying Kelvin–Helmholtz rollers in spectral space of minimal channels

For sufficiently large blade riblets, spanwise coherent rollers related to a Kelvin–Helmholtz
instability form just above the riblet crest [14]. These structures can be identified in spectral
space, where they alter velocity fluctuations in the region roughly delimited by 65≲λ+

x ≲ 290
and λ+

y ≳ 130 according to Garcı́a-Mayoral & Jiménez [14].

4.3.1 Signature of Kelvin–Helmholtz rollers in 2D spectra

In figure 12, we show premultiplied 2D spectra of various flow quantities normalised by
their turbulent variance at a height 5 viscous units above drag-increasing triangular riblets
with α = 30°. This normalisation visualises how these riblets change the distribution of en-
ergy across both spectral dimensions relative to the smooth wall ( ). Energy in the spectral
region associated with the instability (box at the top in figure 12) is altered in spectra of u,
v, w and θ . Pressure fluctuations are shifted to slightly lower λ+

x , but contour lines mostly
retain the shape of smooth-wall flow. Wall-normal velocity and temperature fluctuations in
particular are strongly affected with a distinct peak in the spectral region of the instability.
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Fig. 12 Kelvin–Helmholtz rollers changing the distribution of energy in premultiplied 2D spectra in a
plane 5 viscous units above the crest of drag increasing sharp triangular riblets T321 (contours) com-
pared to smooth-wall flow ( ). Contours are from light to dark at fractions of turbulent fluctuations
k+x k+y E+φψ/(φ ′ψ ′)+ = (0.03,0.06,0.09,0.12,0.15,0.18). Boxes near the top delimit the region of Kelvin–
Helmholtz rollers (65 < λ+x < 290, λ+y > 130) according to [14].

The effect of Kelvin–Helmholtz rollers on fluctuations in the temperature field has im-
plications for heat transfer of the surface. The temperature is modelled as a passive scalar
that cannot affect Kelvin–Helmholtz rollers. However, the Kelvin–Helmholtz instability can
enhance the transport of the passive scalar into the wall, akin to forced convection of heat.
The differences between figure 12(a) and figure 12(e) indicate that Kelvin–Helmholtz rollers
affect heat transfer differently from momentum transfer into the wall. The reversed flow re-
gions seen in figure 11(a) have negative wall-shear stress and positive heat transfer into the
wall, affecting the overall ratio of heat transfer to momentum transfer and thus breaking the
similarity implied by the Reynolds analogy.

4.3.2 Signature of Kelvin–Helmholtz rollers in 2D shear stress cospectra

We further consider the spectrum of Reynolds shear stress, because this is the component
of the Reynolds stress tensor that appears in the mean streamwise momentum equation,
where it directly relates to the drag variation [11,14,29]. Figures 13(a, b) show normalised
2D spectra of Reynolds shear stress in a plane 5 viscous units above the crest of triangular
riblets with α = 30°. For the small drag-reducing riblets (T310), contours are similar to those
above a smooth wall ( ). An impermeable smooth wall does not provide the conditions for
the Kelvin–Helmholtz instability to develop and the same is true for small riblets, typically
below the size of optimum drag, i.e. `+g ≲ 11 [14]. Therefore, the spectrum of Reynolds shear
stress contains negligible energy in the associated spectral region.

The spectral region of Kelvin–Helmholtz rollers for the drag-increasing riblets of the
same shape (T321 in figure 13b) features a strong peak and the distribution of Reynolds
shear stress across the 2D spectrum is distinctly different from that over a smooth wall,
as discussed for figure 12. The bulk of the energy over smooth walls is distributed around
wavelengths close to λ+

x ≈ 1000 (e.g. [21]) with high energy down to λ+
x ≈ 300 based on
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Fig. 13 Determining which spanwise wavelengths are affected by Kelvin–Helmholtz rollers using
drag reducing (T310) and drag increasing (T321) sharp triangular riblets with tip angle α = 30° and
a smooth wall. (a, b) Premultiplied 2D cospectra of Reynolds shear stress in a plane at 5 vis-
cous units above the crest. Contours are from light to dark at fractions of turbulent fluctuations
k+x k+y E+uw/(u′w′)+ = (0.03,0.06,0.09,0.12,0.15,0.18), filled for riblets and lines for the smooth wall. Open
boxes near the top delimit the region of Kelvin–Helmholtz rollers (65 < λ+x < 290, λ+y > 130) according to
[14]. (c–g) Premultiplied 1D cospectra of Reynolds shear stress at different spanwise wavelengths (modes
0,1,2,3,6) for a smooth wall ( ), a drag reducing riblet (T310, ) and a drag increasing riblet (T321,

) with matched domain size. (h–l) Profiles of Reynolds shear stress at different spanwise wavelengths
after integrating across the λ+x that are framed in (a), (b) and shaded in (c–g).

figure 3(c) in [23] or the contour lines in our figure 13(b). However, for the large riblets
with α = 30° in figure 13(b), the strong peak is instead at λ+

x ≈ 200 and the relative influ-
ence of large streamwise structures on Reynolds stress at this particular height is reduced
significantly compared to smooth-wall flow.

4.3.3 1D shear stress cospectra at individual spanwise wavelengths

The aim now is to isolate the effect of the Kelvin–Helmholtz instability by integrating fluc-
tuations only over the wavelengths affected by Kelvin–Helmholtz rollers. As visible in the
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2D spectrum of figure 13(b), the peak associated with the instability is an extension of the
main peak of near-wall turbulence at lower spanwise wavelengths and not entirely separated
from it, at least along the λ+

y dimension.
In an effort to judge how far the influence of Kelvin–Helmholtz rollers extends, stream-

wise spectra at large spanwise wavelengths are shown in figure 13(c–g), including at λ+
y =

∞, which is not visible in the premultiplied 2D spectra (figure 13a,b). The streamwise region
that Garcı́a-Mayoral & Jiménez [14] identified for the instability (shaded in figure 13c–g)
contains the peak in the spectrum ( ). Since we are employing minimal-span channels
with L+y ≈ 250, the spanwise-infinite wavelength (figure 13c) contains a large portion of
the energy. In fact, the peak associated with Kelvin–Helmholtz rollers at the infinite wave-
length is stronger than at any other wavelength resolved in this channel, which underlines
the spanwise two-dimensional nature of the Kelvin–Helmholtz rollers. For λ+

y = L+y ≈ 250
in figure 13(d), the distribution of energy across λ+

x is similar to the one for the spanwise-
infinite wavelength in figure 13(c), although the position of the peak reduces from λ+

x ≈ 205
at λ+

y =∞ to λ+
x ≈ 170. Both peaks are inside the shaded region of λ+

x , but for smaller wave-
lengths (figure 13e–g), the energy peak is reducing in strength and broadening as fluctuations
from the near-wall-cycle are affecting the spectrum (also visible in figure 13b).

In contrast to the large riblets ( ), the curves for the small drag-reducing riblets ( )
in figure 13(c–g) are almost indistinguishable from those of smooth-wall flow ( ), be-
cause the contours in figure 13(a) do not extend into the spectral region of Kelvin–Helmholtz
rollers for either flow. We interpret smooth-wall like flow over riblets in the spectral region
of the instability as Kelvin–Helmholtz rollers not being present, which we expect for riblets
with `+g ≲ 11 that lack wall-normal permeability [14].

4.3.4 Profiles of shear stress contributed by individual spanwise wavelengths

This analysis is so far limited to one representative distance from the wall, 5 viscous units
above the crest. However, we can expect Kelvin–Helmholtz rollers to be three-dimensional
structures and to account for the z-dependence, we integrate Reynolds stresses at every
height across the range of streamwise wavelengths 65 ≲ λ+

x ≲ 290 that are affected by the
instability. For now, we integrate separately at every spanwise wavelength to obtain pro-
files of Reynolds stresses due to Kelvin–Helmholtz rollers shown in figure 13(h–l) that de-
pend on λ+

y . The drag reducing riblet case ( ) has profiles that are very close to that
of the smooth wall ( ) at all spanwise wavelengths. For the drag increasing case ( ),
the effect of Kelvin–Helmholtz structures is evident. In agreement with the description by
Garcı́a-Mayoral & Jiménez [14] and visible in figure 13(h, i), Kelvin–Helmholtz rollers in-
crease energy in large spanwise wavelengths for roughly the first 20 viscous units above the
riblet crest. At λ+

y ≈ 125 (figure 13j), the peak is lower and farther from the wall as struc-
tures from the near wall cycle are beginning to affect the profile. Particularly for the graphs
in figure 13(k, l) at λ+

y < 100, the profile no longer captures energy associated exclusively
with Kelvin–Helmholtz rollers, but mainly with the near-wall cycle. This is more readily
visible in the 2D spectrograms of figure 13(b).

4.3.5 Summary of scales affected by Kelvin–Helmholtz rollers

The above spectral analysis of the flow over sharp triangular riblets demonstrates that the
lower bound for the spanwise extent of Kelvin–Helmholtz rollers should be in the range
125 < λ+

y ≲ 250. More precisely, figure 13(i,j) suggest the threshold should be closer to
λ+

y = 250 in order to exclude turbulence from the near-wall cycle. We therefore consider the
spectral region associated with the Kelvin–Helmholtz instability in our minimal-span chan-
nels as λ+

y ≳ 250 in the spanwise direction, which is more conservative than the threshold
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λ+
y ≳ 130 that Garcı́a-Mayoral & Jiménez [14] suggested. In the streamwise direction, the

range 65 < λ+
x < 290 [14] is appropriate also for the present data set. This way, we only let

fluctuations pass the spectral filter that are due to the Kelvin–Helmholtz instability, while we
discard fluctuations associated with the near-wall cycle that characterises both the smooth
and riblet wall flows.

4.4 Dependence of Kelvin–Helmholtz rollers on riblet shape and size

We now integrate fluctuations in spectral space for only the wavelengths affected by the
Kelvin–Helmholtz instability to impose a spectral filter on variance profiles of different flow
quantities

φ ′ψ ′+
KH(z+) = ∫

∞

250
[∫

290

65
E+

φψ dλ+
x ]dλ+

y , (10)

where (φψ) ∈ {uu,uw,wθ}. In figure 14, we compare those filtered profiles for all riblet
cases to smooth-wall flow. Even though Kelvin–Helmholtz rollers are absent over a smooth
wall, (u′u′

+
KH)1/2 increases over the first 20 viscous units from the wall.

Drag-reducing riblets of any shape have almost the same profile ( in figure 14, left)
as the smooth wall, because they lack Kelvin–Helmholtz rollers. The profiles of Reynolds
shear stress (figure 14, centre) and wall-normal transport of the passive scalar (figure 14,
right) in the spectral region of Kelvin–Helmholtz rollers are likewise not affected by the
presence of small riblets.

For larger, drag-increasing riblets ( in figure 14), differences emerge between ri-
blet shapes. The two drag-increasing triangular riblets with α = 30° in figure 14(a–c) have
profiles that are distinctly different from those of the smooth-wall flow. All three quanti-
ties peak at z+ − z+t < 10, which is not the case for the smooth wall and therefore indica-
tive of Kelvin–Helmholtz rollers. The distances from the riblet crest match those found by
Garcı́a-Mayoral & Jiménez [14] for Kelvin–Helmholtz rollers over blade riblets. Indeed,
our blades in figure 14(m–o) have similar peaks, that are however lower in magnitude than
for the sharp triangular riblets. For the other riblet shapes, fluctuations in the spectral region
of Kelvin–Helmholtz rollers resemble more closely those of smooth-wall flow, indicating
that the instability is weak or does not develop. For example, we can observe minor ef-
fects of the instability for trapezoidal riblets and symmetric triangular riblets with α = 60°,
that are much weaker than for the sharper triangular riblets with α = 30°. Here, w′θ ′

+
KH is

the most sensitive indicator of all possible cospectra (as also evident in figure 12). The two
largest trapezoidal riblets (lightest curves in figure 14j–l) have higher values of −u′w′

+
KH and

−w′θ ′
+
KH and monotonously increasing profiles not seen for any other riblet, suggesting that

structures related to the near-wall cycle influence the spectral region for these very large ri-
blets (s+ = 50,63). The instability appears to be absent or vanishingly weak for the triangular
riblets with α = 90° in figure 14(g–i) and the asymmetric triangular riblets in figure 14(p–r),
for which fluctuations in the considered spectral region are almost identical to those over a
smooth wall.

The filtered profiles for channels of different width L+y ≈ {250,450} in figure 14(a–c)
and in figure 14(g–i) match within the statistical uncertainty, because energy at λ+

y > L+y is
accounted for in the spanwise-infinite wavelength, as also observed in figure 8 at the height
z+ − z+t = 5. Reynolds-number effects are negligible, as we can observe for the smooth-wall
flows in figure 14(a–c) at Reτ = 395 and Reτ = 1000 respectively and also for the blades in
figure 14(m–o) at Reτ = 395 and Reτ ≈ 550.
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Fig. 14 Kelvin–Helmholtz rollers strongly affect fluctuations in (a–c), (m–o), but not in (p–r): profiles of
streamwise velocity fluctuations (left), Reynolds shear stress (centre) and the wall-normal transport of θ
(right), filtered only for wavelengths associated with the Kelvin–Helmholtz instability as per (10). Smooth
wall flow ( ), riblets that reduce ( ) or increase ( ) drag. Curves for each shape get lighter with
increasing riblet size. Light curves in (a–c) are for smooth-wall and riblet flow at Reτ = 1000, all others at
Reτ = 395. Data from the wider domains with L+y ≈ 450 is shown in grey (a–c and g–i). Grey curves in (m, n)
are for reference full-span channel cases 13L and 20L at Reτ ≈ 550 from [15] along with the corresponding
smooth-wall profile.
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5 Conclusion

Kelvin–Helmholtz rollers have been shown to develop in the flow less than 20 viscous units
above blade riblets, where they contribute to drag [14]. In order to investigate effects of the
Kelvin–Helmholtz instability on riblets of six different shapes, we applied the minimal-span
channel framework for cost-efficient DNS of rough-wall flows [30] to this particular rough-
ness type of streamwise uniform riblets. The minimal domain reduced the computational
cost and allowed us to investigate 21 different riblet cases. Since Kelvin–Helmholtz rollers
have a larger spanwise extent than turbulence close to a smooth wall [15], we systematically
evaluated effects of the minimal domain width L+y ≈ 250 on large flow structures. Specif-
ically, we compared velocity spectra at different heights to those from minimal channels
with L+y = {150,450} and also to full-span channel reference data from Garcı́a-Mayoral &
Jiménez [15]. In agreement with MacDonald et al. [30], we find that large flow structures are
unphysically affected down to a lower height than smaller-scale turbulence. Nevertheless,
our domains with L+y ≈ 250 correctly represent fluctuations across all wavelengths, includ-
ing those of Kelvin–Helmholtz rollers, for at least the first 30 viscous units above the riblet
crest.

We re-evaluated the spectral filter by Garcı́a-Mayoral & Jiménez [14] for the present
riblet geometries to extract variance profiles solely due to the Kelvin–Helmholtz instability.
In order to filter fluctuations with sufficient spanwise spectral separation between Kelvin–
Helmholtz rollers and other near-wall turbulence, our domain constraint L+y ≳ 250 is more
stringent than the one determined by MacDonald et al. [30] for general roughness. Compar-
ison to smooth-wall flow, for which the Kelvin–Helmholtz instability is absent, suggests that
Kelvin–Helmholtz rollers form in the flow above blade riblets, as shown by Garcı́a-Mayoral
& Jiménez [14], and also above triangular riblets with a tip angle α = 30°. However, the
filtered variance profiles revealed a dependence of Kelvin–Helmholtz rollers on the riblet
shape, because the profiles of blunt triangular riblets with α = 60° to α = 90° and trape-
zoidal riblets with α = 30° resemble that above a smooth wall (figure 14), indicating that
these riblet shapes do not trigger the Kelvin–Helmholtz instability.
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