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A B S T R A C T

We carry out direct numerical simulation of compressible square duct flow in the range of bulk Mach numbers
=M 0.2 3,b and up to friction Reynolds number =Re 500. The effects of flow compressibility on the secondary

motions are found to be negligible, with the typical Mach number associated with the cross-stream flow always
less than 0.1. As in the incompressible case, we find that the wall law for the mean streamwise velocity applies
with good approximation with respect to the nearest wall, upon suitable compressibility transformation. The
same conclusion also applies to a passive scalar field, whereas the mean temperature does not exhibit inertial
layers because of nonuniformity of the aerodynamic heating. We further find that the same temperature/velocity
relation that holds for planar channels is applicable with good approximation for square ducts, and develop a
similar relation between temperature and passive scalars.

1. Introduction

Internal flows in square ducts are common in many engineering
applications involving both incompressible and compressible flows.
Typical low-speed applications involve cooling, water draining and
ventilation systems, whereas at high speed the interest is mainly for
aircraft air intakes. Square duct flow exhibits secondary motions in the
cross-steam plane. These were first experimentally observed
by Nikuradse (1926) and Prandtl (1927), who invoked the occurrence
of eight counter-rotating vortices bringing high-momentum fluid from
the duct core towards the corners to explain the bending of the
streamwise velocity isolines. A considerable number of experiments and
numerical simulations have been produced to explain the nature of
secondary motions. In particular the present authors have recently
developed (Pirozzoli et al., 2018; Modesti and Pirozzoli, 2018), a direct
numerical simulation (DNS) dataset of square duct flow in the friction
Reynolds number range =Re h* / * 150 1000v (where h is the duct
half side length, and = u* / *v w is the viscous length scale based on the
mean friction velocity =u * */w w ), the highest currently available in
the literature. Despite their effect in redistributing the wall shear stress
along the duct perimeter, we have shown that secondary motions do
not have large influence on the bulk flow properties, and the stream-
wise velocity field can be characterized with good accuracy as resulting
from the superposition of four flat walls in isolation. Furthermore, we
showed that secondary motions contribute approximately 6% of the

total friction, and act as a self-regulating mechanism of turbulence
whereby wall shear stress non-uniformities induced by corners are
equalized, and universality of the wall-normal velocity profiles is es-
tablished.

Regarding the compressible flow regime experimental and numer-
ical studies are rather limited. Davis et al. (1986) investigated super-
sonic developing adiabatic flow at inlet Mach number =M 3.91 and
unit Reynolds number = ×Re/m 1.8 106. They found that secondary
motions develop as in the incompressible case and that the transformed
van Driest velocity profiles obey the universal logarithmic wall law.
More recently, Morajkar and Gamba (2016) carried out a series of ex-
periments for supersonic duct flow at =M 2.75, = ×Re/m 8.9 106 using
stereoscopic particle image velocimetry. Similar to the incompressible
case, they found that the velocity isolines bulge towards the duct cor-
ners due to eight counter-rotating cross-stream vortices. The prediction
of secondary motions is notoriously difficult for turbulence models,
especially for those based on the scalar eddy-viscosity
hypothesis (Bradshaw, 1987). Mani et al. (2013) carried out Reynolds
averaged Navier–Stokes simulations of supersonic square duct flow
using different eddy viscosity models, showing that satisfactory pre-
diction of secondary motions is recovered using quadratic constitutive
relations. Vázquez and Métais (2002) performed large-eddy simulation
(LES) of compressible isothermal duct flow at bulk Mach number

= =M u c/ 0.5b b w (with ub the bulk velocity and cw the speed of sound at
the wall), both with cooled walls and only one heated wall. The cooled
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case showed good agreement with incompressible data available in the
literature, indicating that compressibility effects are negligible at that
Mach number, whereas higher intensity of the secondary motions was
observed for the case with one heated wall. Vane and Lele (2015)
carried out wall-modeled LES corresponding to the experimental setup
of Davis et al. (1986), and found that the development of the secondary
eddies is strongly affected by the wall shear stress distribution, and that
they can significantly alter the primary, axial flow. This is consistent
with the findings of the present authors, who carried out numerical
experiments of incompressible duct flow in which secondary motions
have been artificially suppressed (Modesti et al., 2018) and found that
both the wall shear stress and mean streamwise velocity are affected.

Although available studies of compressible duct flow seem to agree
that the structure of the secondary motions is weakly affected by
compressibility, the quantitative effect of Mach number variations on
the flow is not fully understood yet. In particular, an important prac-
tical issue is the definition of the relevant effective Reynolds number for
comparison across Mach numbers, which is intrinsically related to the
subject of compressibility transformations (Morkovin, 1962). In plane
channel flow, Modesti and Pirozzoli (2016) found that the compressi-
bility transformation derived by Trettel and Larsson (2016, hereafter
referred to as TL) yields very good collapse of the wall-scaled velocity
distributions in a wide range of Mach numbers. On the other hand the
applicability and accuracy of compressibility transformations has never
been assessed in the case of multiple walls, and success of TL trans-
formation in plane channel flow does not automatically guarantee
translate to success in the case of duct flow. Another topic of interest is
the behavior of passive scalars in compressible flow, which is important
to understand mixing processes in turbulent combustion. However,
passive scalars in compressible wall-bounded flows have received little
attention so far, mainly limited to the case of planar
channels (Foysi and Friedrich, 2005) and pipe flow (Ghosh et al., 2008;
2010). Another important topic in compressible flows is temperature/
velocity relations (Smits and Dussauge, 2006). Whereas these relations
are well established in canonical flows (Zhang et al., 2014), their va-
lidity has never been verified for more complex geometries.

The aim of the present work is three-fold. First, we attempt to ex-
tend the compressibility velocity transformations developed for plane
channel flow to the case of multiple walls, through suitable definition of
the relevant effective Reynolds number. Second, we propose a com-
pressibility transformation for passive scalars. Third, we analyze the
temperature field with the main objective of verifying the validity of
temperature/velocity relations. Hence, we perform DNS of isothermal-
wall square duct flow in the range of bulk Mach number =M 0.2 3,b
up to =Re * 500.

2. Computational setup

We solve the compressible Navier–Stokes equations for a perfect
shock-free heat-conducting gas augmented with the transport equation
for a passive scalar ϕ,
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where ui is the velocity component in the ith direction, ρ is the fluid
density, p is the thermodynamic pressure, =s c pln( )v is the entropy
per unit mass, = =c c/ 7/5p v is the specific heat ratio, σij and qj are,
respectively, the viscous stress and the heat flux components,
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The dependence of the viscosity coefficient on temperature is accounted
for through Sutherland’s law, and the thermal conductivity is defined as

=k c µ Pr/ ,p with =Pr 0.71. The unsteady, uniform-in-space forcing
term Π in Eq. (1b)is evaluated at each time step in order to discretely
enforce constant mass-flow-rate in time, hence the bulk Mach number is
also constant. The passive scalar diffusivity is = µ Sc/ , with the
Schmidt number, and the forcing term Φ in Eq. (1d) is evaluated at each
time step to keep a constant scalar flow rate in time. The equations are
numerically solved using a fourth-order co-located finite-difference
solver, and the convective terms are discretized in such a way that the
total kinetic energy is preserved from convection in the inviscid
limit (Pirozzoli, 2010). Viscous terms are expanded to Laplacian form
and discretized using standard central finite-difference approximations.
The use of the entropy equation (1c) in place of the total energy
equation is instrumental to the semi-implicit time advancement, thus
avoiding the severe acoustic time step limitation in the wall-normal
direction (Modesti and Pirozzoli, 2018). The equations are solved in a
box of size 6πh ×2h ×2h, which was found to yield satisfactory in-
sensitivity of the flow statistics (Pirozzoli et al., 2018). Periodicity is
enforced in the streamwise direction, whereas isothermal no-slip
boundary conditions are used at the walls, where we also set

= 0 (Modesti and Pirozzoli, 2016). The velocity field is initialized
with the incompressible laminar solution with superposed synthetic
perturbations obtained through the digital filtering
technique (Klein et al., 2003). Density and temperature are initially
uniform, whereas the passive scalar is initialized as the streamwise
velocity field, upon suitable rescaling. Streamwise- and time-averaged
statistics have been collected at equal time intervals, and convergence
of the flow statistics has been checked a-posteriori. As observed in
previous DNS studies of duct flow (Pinelli et al., 2010; Vinuesa et al.,

Table 1
Compressible duct flow dataset. =M u c/b b w and =Re u h µ2 / ,b w b w are the bulk Mach and Reynolds number respectively; =Re h* / *v and =Re y h* *( )/ *T T v are the
standard and transformed friction Reynolds number, as defined in Eq. (8). Nxi is the number of mesh points in the ith direction, =M u c*/ w is the friction Mach
number, T* is the global friction temperature, to be defined in Eq. (5). Δx is the mesh spacing in the streamwise direction, and Δymax, Δymin are the maximum and
minimum mesh spacings in the cross-stream direction, all given in global wall units, = u* / *v w . The box dimensions are 6πh ×2h ×2h for all the flow cases. t*av is
the effective time averaging interval.

Case Mb Reb Re * Re *T Mc Nx Ny Nz Δx* y*max y*min Mτ T T*/ w t u h* */av

D02 0.2 4410 152 146 0.26 512 128 128 5.6 3 0.68 0.014 0.001 2290
D15A 1.5 6000 228 141 1.66 512 128 128 8.4 5.4 0.58 0.082 0.05 830
D15B 1.5 14600 507 332 1.62 1024 256 256 9.3 6.0 0.76 0.075 0.045 1036
D3 3 9760 483 145 2.42 1024 256 256 8.9 5.8 0.61 0.12 0.14 213
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2016; Pirozzoli et al., 2018), the time integration intervals needed to
achieve statistical convergence are much longer than those typical of
plane channel flow; see Table 1. Duct flow statistics inevitably feature
asymmetries in the cross-stream plane, even after long time
averaging (Pirozzoli et al., 2018), which are here alleviated through
averaging over the four quadrants. Three supersonic simulations have
been carried out at =M 1.5,b =Re * 220 500 and at =M 3,b =Re * 500,
(see Table 1). A reference low-speed simulation at =M 0.2,b =Re * 150
has also been carried out (case D02), which was shown to yield ex-
cellent agreement of mean and r.m.s. velocity with reference in-
compressible DNS data (Pirozzoli et al., 2018).

The maximum Mach number =M u c/c c are also reported. We note
that Mc <Mb for flow case D3, due to the fact that the bulk density is
constant for all flow cases and =M u / ,b b b =u u V1/ d ,b b V where V
is the flow volume.

For the forthcoming analysis, the results are reported both in local
and global wall units. Accordingly, we introduce reference friction
values for velocity, temperature, and passive scalar, namely
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where the w subscript denotes wall values, the * superscript quantities
averaged over the duct perimeter, and is the viscous dissipation

function, defined in Eq. (12). For clarity of notation, hereafter x denotes
the streamwise direction, and y and z the cross-stream and wall-normal
directions, and u, v and w are the respective velocity components. Both
Reynolds ( = + ) and Favre ( = + , = / ) decomposi-
tions will be considered in the following, where the overline symbol
denotes averaging in the streamwise directions and in time. Accord-
ingly, the Reynolds stress components are denoted as = u uij i j .

3. Results

3.1. Velocity field

In this section we analyze the structure of the mean velocity field
including the secondary motions, with special reference to establishing
the effect of compressibility on the validity of compressibility trans-
formations for the wall law. The structure of the secondary motions is
hereafter analyzed by introducing a cross-flow stream function ψ, de-
fined such that at any point over the duct cross section

= =v
z

w
y

, ,w w (7)

which satisfies mass conservation in the cross-stream plane. In Fig. 1 we
show ψ in a quarter of the duct, scaled with respect to ub and h, for the
various flow cases of Table 1. All the flow cases exhibit the same typical
flow topology with eight counter-rotating eddies, which act to feed the
low-momentum regions created at the corners. Fig. 2 further shows that
the cross-stream velocity component, =v y z w z y( , ) ( , ), is character-
ized by a three-lobe structure, as in the incompressible
case (Pirozzoli et al., 2018). The cross-stream velocity peaks are found

Fig. 1. Panel (a), contours of the streamfunction ψ in the range u h0.002 /( ) 0.002,b in intervals of 0.0025 (dashed lines denote negative values). Data are
reported for flow cases D02 (top left), D15A (top right), D15B (bottom left), D3 (bottom right). Panel (b), 1D profiles at =y h/ 0.75 (solid) and =y h/ 0.5 (dashed)
for case D02 (deltas), D15A (circles), D15B (diamond), D3 (squares).

Fig. 2. Panel (a), contours of the mean cross-stream velocity component v in the range v u0.02 / 0.02,b in intervals of 0.0025 (dashed lines denote negative
values). Data are reported for flow cases D02 (top left), D15A (top right), D15B (bottom left), D3 (bottom right). Panel (b), 1D profiles at =y h/ 0.75 (solid) and

=y h/ 0.5 (dashed) for case D02 (deltas), D15A (circles), D15B (diamond), D3 (squares).
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Fig. 3. Mean streamwise velocity profiles along the y direction (up to the corner bisector), given in local wall units at all z (gray curves), for flow case D02 (a), D15A
(b) D15B (c) and D3 (d). Representative stations along the bottom wall are highlighted, namely =z* 15 (diamonds), + =z h h( )/ 0.1 (right triangles), + =z h h( )/ 0.25
(triangles), + =z h h( )/ 0.5 (circles), + =z h h( )/ 1 (squares). The dashed lines denote mean profiles from DNS of pipe flow at =Re 180 (a-b-d) and =Re 360 (c)
from El Khoury et al. (2013), The inset panel (b) shows the mean streamwise velocity in the cross-stream plane with symbols denoting representative sections.

Fig. 4. Mean streamwise velocity profiles transformed according to Eq. (8) along the y direction (up to the corner bisector), given in local wall units at all z (gray
curves), for flow case D02 ( =Re * 146,T panel a), D15A ( =Re * 141,T panel b) D15B ( =Re * 332,T panel c) and D3 ( =Re * 145,T panel d). Representative stations along the
bottom wall are highlighted, namely =z* 15 (diamonds), + =z h h( )/ 0.1 (right triangles), + =z h h( )/ 0.25 (triangles), + =z h h( )/ 0.5 (circles), + =z h h( )/ 1
(squares). The dashed lines denote mean profiles from DNS of pipe flow at =Re 180 (a,b,d) and =Re 360 (c) El Khoury et al. (2013). The inset panel (b) shows the
mean streamwise velocity in the cross-stream plane with symbols denoting representative sections.
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to scale reasonably well with the bulk flow velocity, regardless of Mach
and Reynolds number, with maximum value of about 2% of ub, which is
similar to the incompressible case (Pirozzoli et al., 2018).

The mean streamwise velocity field in compressible flows is generally
characterized using compressibility transformations. Morkovin (1962)
first postulated that if density fluctuations are negligible with respect to
local mean density, the direct effect of compressibility on turbulence
reduces to variations of the mean thermodynamic properties. This led to
the well known van Driest transformation (van Driest, 1951), which is
quite accurate for adiabatic walls, whereas it is known to fail for iso-
thermal walls (Modesti and Pirozzoli, 2016). For the latter wall condi-
tions, Trettel and Larsson (2016) have recently derived a compressibility
transformation for channel flow which relies on the mean momentum
balance and log-law universality. Pirozzoli et al. (2018) showed that in
incompressible square duct flow the streamwise velocity field is mainly
influenced by the nearest wall, thus the wall law applies with reasonable
accuracy up to the corner bisector. Based on this result and on the fact
that the secondary motions are not greatly affected by compressibility,
we then introduce the TL transformation for y (the direction normal to
the nearest wall) and u,

= =y y z f z u y z g z u z( , ) ( , ) d , ( , ) ( , ) ˜ ( , )d ,T
y

T T
y

T0 0 (8)

where the stretching functions are defined as
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with =N y z( , ) / ,w and =R y z( , ) / w. It is important to note that the
stretching functions fT and gT depend both on y and z (through the mean
density and mean viscosity), and likewise yT and uT. It is also important
to note that the transformation used for the wall distance is actually
equivalent to use of the semi-local wall units introduced by
Huang et al. (1995).

Fig. 3 shows the mean velocity profiles as a function of the wall-
normal distance up to the corner bisector (where mean velocity attains
a maximum), in local wall units. For reference purposes, the mean
velocity profiles from DNS of incompressible pipe flow are also
reported (El Khoury et al., 2013). Reasonable collapse of the velocity
profiles at various z is recovered, also including the near-corner region.
However, large differences are found among the different flow cases,
especially at higher Mach number. The TL transformed velocity profiles
are shown in Fig. 4, which now shows much better collapse of the ve-
locity distributions both with respect to z (up to the corner bisector) and
across different flow cases. This confirms on one hand that the TL
transformation derived for plane channel flow also holds with good
approximation for square ducts. On the other hand, the figure also
suggests that for the Mach numbers considered here close similarity
with the velocity distributions in incompressible pipe flow is recovered
for matching values of an equivalent friction Reynolds number, which
we define as

=Re y h* * ( )/ *.T T v (10)

where

=y y
h

y y z z* ( ) 1 ( , )d ,T
h

T0 (11)

is a stretched wall-normal coordinate averaged along the z direction,
which accounts in the mean for the variation of the local transformed
scale yT with z. As in the incompressible case, duct flow shows close
similarity with pipe flow, which is a direct consequence of the fact that
the intensity of the secondary flows is rather small (Pirozzoli et al.,
2018).

The streamwise turbulent stress (τ11) normalized by the local wall
shear stress is shown in Fig. 5, and compared with incompressible pipe
flow data. Along most of the wall, the behaviour is qualitatively similar
to canonical pipe flow, with a near-wall peak at +y 12. The scatter

Fig. 5. Streamwise turbulent stresses along the y direction (up to the corner bisector), given in local wall units at all z (gray curves), for flow case D02 ( =Re * 146,T
panel a), D15A ( =Re * 141,T panel b) D15B ( =Re * 332,T panel c) and D3 ( =Re * 145,T panel d). Representative stations along the bottom wall are highlighted, namely

=z* 15 (diamonds), + =z h h( )/ 0.1 (right triangles), + =z h h( )/ 0.25 (triangles), + =z h h( )/ 0.5 (circles), + =z h h( )/ 1 (squares). The dashed lines denote stress
profiles from DNS of pipe flow at =Re 180 (a,b,d) and =Re 360 (c) (El Khoury et al., 2013).
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among the various z sections appears to be generally much larger than
for the mean velocity field, although it seems to become confined to the
corner vicinity at high enough Re. The streamwise turbulent stress
component exhibits a higher peak in the buffer layer at supersonic
Mach number, which is not accurately captured by normalization with
the local wall shear stress. This effect was observed in previous studies
of canonical compressible flows (Coleman et al., 1995; Ghosh et al.,
2010; Modesti and Pirozzoli, 2016), but no convincing explanation has
been provided to date. Good collapse with incompressible pipe flow is
by the way observed for all cases in the outer part of the wall layer. All
other Reynolds stress components (not shown) have similar or higher
degree of universality.

3.2. Temperature field

The temperature field is herein analyzed starting from the averaged
enthalpy transport equation,
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where the terms C, D, P, Ψ, and T represent convection, viscous diffu-
sion, pressure work, viscous dissipation and turbulent transport. The
various contributions to the budget are reported in Fig. 6, in global
stretched inner units, upon normalization of temperature with respect
to the global friction temperature, both in the cross-stream plane and at
selected wall-normal sections. The pressure work term is not reported,
being negligible in all cases (Bradshaw and Huang, 1995). The figure
shows that the stretched inner scaling yields good collapse across dif-
ferent Mach (cases D02, D15A, D3) and Reynolds numbers (D15A,
D15B). Similar to what was found from the mean momentum balance
equation in the incompressible case (Pirozzoli et al., 2018), we note
that mean convection is mainly relevant at the duct corners, whereas it
plays a minor role with respect to the other terms in the core region.
Viscous diffusion and dissipation contribute most to the budget, and
they are partially balanced by turbulent heat transport in the buffer
layer.

Fig. 7 shows the inner-scaled wall-normal temperature profiles up to
the corner bisector, highlighting good agreement between duct flow
and supersonic pipe flow data at matching Mach and Reynolds
number (Modesti, 2017). The temperature profiles show rather good
universality with respect to the spanwise direction in the core region,
whereas larger scatter is observed between 10< y/δv <100, compared
to the mean velocity profiles, Figs. 3–4. Nevertheless, temperature does
not exhibit any logarithmic layer nor universality with respect to
Reynolds and Mach number, unlike previously observed for the mean
velocity field (see Fig. 4). Corner effects in the temperature field seem
to be more significant than for the mean velocity, yielding earlier de-
viation from a common distribution when approaching the wall. This
behavior may be explained by noting that in the current case of iso-
thermal wall the energy balance is mainly controlled by aerodynamic
heating, which is associated with viscous dissipation, and which acts as
a non-uniform spatial forcing. As shown in the forthcoming Section, in
the case of a passive scalar with spatially uniform forcing a logarithmic
layer does in fact emerge as for the mean velocity. Hence, deviations of
the temperature distributions from a logarithmic behavior are the likely
consequence of non-uniform heating, which implies that regarding the
temperature as a passive scalar may lead to incorrect conclusions, even
at low Mach numbers. It is noteworthy that greater universality of the
temperature profiles is achieved in the core region when the tempera-
ture profiles are scaled with the average friction temperatureT* defined
in Eq. (5) (see Fig. 8), which is a hint that the temperature field away
from walls is primarily controlled by the overall aerodynamic heating,
whereas local heating is important near walls.

Knowledge of the temperature distribution in compressible flow is
necessary for the prediction of friction (Smits and Dussauge, 2006). In
particular, based on the distribution of T one can derive the mean ve-
locity distribution through reverse application of the compressibility
transformation introduced in Section 3.1, for which temperature/ve-
locity relationships are needed. The classical temperature/velocity re-
lation by Walz (1959) has proven its accuracy in the case of adiabatic
walls (Duan et al., 2010), whereas it is found to fail in the case of
isothermal walls (Modesti and Pirozzoli, 2016). Recently,
Zhang et al. (2014) derived the following generalized temperature/
velocity relation,
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where = +T T r u c˜ ˜ /(2 )rg e g e p
2 is a generalized recovery temperature,

Fig. 6. Contours (panels a, c, e, g), and profiles (panels b, d, f, h) of mean
enthalpy budget terms (Eq. (12)) in global stretched inner units. Contours are
shown in the range u T0.025 (.)/( * * */ *) 0.025w v , in intervals of 3·10 ,3

dashed lines denoting negative values. From top to bottom we show convection,
turbulent transport, viscous diffusion, and viscous dissipation. The 1D profiles
are reported at =y* 25 (dashed lines) and =y* 75 (solid lines), for all cases
(D02, triangles; D15A, circles; D15B, diamonds; D3, squares).
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Fig. 7. Mean temperature profiles along the y direction (up to the corner bisector), given in local wall units at all z (gray curves), for flow case D02 ( =Re * 146,T panel
a), D15A ( =Re * 141,T panel b) D15B ( =Re * 332,T panel c) and D3 ( =Re * 145,T panel d). Representative stations along the bottom wall are highlighted, namely

=z* 15 (diamonds), + =z h h( )/ 0.1 (right triangles), + =z h h( )/ 0.25 (triangles), + =z h h( )/ 0.5 (circles), + =z h h( )/ 1 (squares). The dashed lines denote mean
profiles from DNS of pipe flow at =Re 143 (a,b,d) and =Re 334 (c) Modesti (2017).

Fig. 8. Mean temperature profiles along the y direction (up to the corner bisector), given in global wall units at all z (gray curves), for flow case D02 ( =Re * 146,T
panel a), D15A ( =Re * 141,T panel b) D15B ( =Re * 332,T panel c) and D3 ( =Re * 145,T panel d). Representative stations along the bottom wall are highlighted, namely

=z* 15 (diamonds), + =z h h( )/ 0.1 (right triangles), + =z h h( )/ 0.25 (triangles), + =z h h( )/ 0.5 (circles), + =z h h( )/ 1 (squares). The dashed lines denote mean
profiles from DNS of pipe flow at =Re 143 (a,b,d) and =Re 334 (c) Modesti (2017).
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=r c T T u Prq u2 ( ˜ )/ ˜ 2 /( ˜ )g p w e e w e w
2 is a generalized recovery factor,

and ue and Te are the external values of velocity and temperature, here
interpreted as the duct centerline values. Eq. (13) explicitly takes into
account the wall heat flux qw, and it reduces to the Walz relation in the

case of adiabatic walls. Fig. 9 shows scatter plots of temperature as a
function of velocity for all points in the duct cross section. Nearly
perfect coincidence of the present DNS data with the predictions of
Eq. (13) is observed. Integration of Eq. (9) thus allows one to

Fig. 9. Scatter plots of mean tempera-
ture versus mean velocity for all points
in the duct cross section for flow cases
D15A (a), D15B (b), D3 (c). The sub-
script e refers to duct centerline values.
The dashed line denotes the general-
ized temperature/velocity relation
of (Zhang et al., 2014) given in Eq. (13)
and the dash-dotted line denote Walz
relation (Walz, 1959).

Fig. 10. Mean TL-transformed passive scalar profiles along the y direction (up to the corner bisector), given in local wall units at all z (gray curves), for flow case D02
( =Re * 146,T panel a), D15A ( =Re * 141,T panel b) D15B ( =Re * 332,T panel c) and D3 ( =Re * 145,T panel d). ϕτ is the friction value of the passive scalar, defined in
Eq. (6). Representative stations along the bottom wall are highlighted, namely =z* 15 (diamonds), + =z h h( )/ 0.1 (right triangles), + =z h h( )/ 0.25 (triangles),

+ =z h h( )/ 0.5 (circles), + =z h h( )/ 1 (squares). The dashed lines denote fits of experimental incompressible pipe flow data by Kader (1981). Different panels show
flow cases D02 (a), D15A (b), D15B (c), D3 (d).

Fig. 11. Scatter plots of mean temperature versus mean passive scalar for all points in the duct cross section for flow cases D15A (a), D15B (b), D3 (c). The subscript e
refers to duct centerline values. The dashed line denotes the generalized temperature/passive scalar relation given in Eq. (15).
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reconstruct the full velocity field for given values of the bulk Reynolds
and Mach numbers.

3.3. Passive scalar field

In this section we study the transport of a passive scalar field gov-
erned by Eq. (1d) at unit Schmidt number, previously studied in
channel flows in the incompressible case (Pirozzoli et al., 2016), and for
supersonic Mach number (Foysi and Friedrich, 2005). Exploiting the
similarity between the governing equation of a passive scalar (Eq. (1d))
and the streamwise momentum equation (Eq. (1b)), we introduce a
transformation for the mean scalar field which mimics the TL trans-
formation (Eq. (8)), as follows

=y z g z z( , ) ( , )
˜

( , ) d ,T
y

T0 (14)

with gT given in Eq. (9). Fig. 10 shows the inner-scaled transformed
passive scalar profiles, compared with the correlations developed
by Kader (1981) for incompressible pipe flow, which include an inertial
layer with logarithmic dependence on the wall distance. The figure does
in fact show reasonable collapse of the ϕT distributions with respect to z
across the different flow cases and with the incompressible fittings. This
findings supports our conjecture that the TL transformation can be
extended to predict the behavior of passive scalars in compressible
flow. We recall that the uniform forcing Φ in the passive scalar Eq. (1d),
equivalent to the uniform pressure gradient in the momentum equation
Π plays a relevant role for the occurrence of the logarithmic layer. In-
deed, the mean temperature, which is controlled by a non-uniform
spatial forcing, Ψ in (12), does not exhibit a sizable logarithmic layer,
Fig. 7. Again based on the close similarity between ϕ and u, we consider
a generalization of Eq. (13) to relate temperature and passive scalars,
namely

= + +T
T

T T
T

T T
T

˜
1 ,

w

rg w

w e

e rg

w e

2

(15)

where e denotes the mean value of the passive scalar at the duct
centerline. Fig. 11 shows the scatter plots of temperature as a function
of the mean passive scalar for all points in the duct cross section. As for
the velocity field, very good collapse of the supersonic DNS data with
the predictions of Eq. 15is observed, with the dependence of T̃ on ˜
only slightly less universal than its dependence on ũ. We conclude that
integration of Eq. (14) can be used to reconstruct the full passive scalar
field for assigned values of the bulk Reynolds and Mach numbers.

4. Instantaneous flow field

The general flow organization is scrutinized through visualizations
of velocity, passive scalar and temperature fluctuations in the wall-
parallel and cross-stream planes. Fig. 12 shows instantaneous stream-
wise velocity fluctuations in wall-parallel planes at a distance =y* 15T .
The velocity fluctuations in the buffer layer are organized in alternating
low/high velocity streaky structures, elongated in the streamwise di-
rection. The figure shows that the azimuthal spacing of the streaks
decreases with the Reynolds number, and in particular we find that the
typical spacing is of order 100 *,v the same observed in incompressible
flows, thus further supporting the use of the semi-local scaling defined
in (10)-(11) as effective wall units in compressible duct flow. A com-
plementary picture of the flow field is provided by the flow snapshots in
cross-stream planes, shown in Fig. 13. Whereas at low Reynolds number
only eddies with O(h) size are found, scale separation clearly emerges in
flow case D15B, which also includes near-wall small-scale structures
eddies in addition to the core eddies. As in incompressible wall-
bounded flows, the passive scalar field shows substantial correlation
with the streamwise velocity field, but it is characterized by sharper
interfaces between regions with positive and negative fluctuations,
owing to the absence of the pressure gradient term, whose effect is to
smoothen the velocity field (Pirozzoli et al., 2016). Temperature fluc-
tuations also show very similar organization as velocity and passive
scalar fluctuations throughout the Mach number range under study,
despite the previously noted differences between their mean fields. The
picture thus emerges that the qualitative structure of turbulence in duct
flow is not substantially changed by compressibility, and the essential
universal features of turbulent wall-bounded flows are retained.

5. Conclusions

We have carried out DNS of developed compressible flow in a square
duct at various Mach and Reynolds numbers, with the aim of clarifying
the behavior of the mean velocity, temperature and passive scalar fields.
We have found that all the flow cases exhibit the same typical secondary
flow structure including eight counter-rotating eddies, which act to
supply momentum to the duct corners. The cross-stream velocity peaks
are found to scale reasonably well with the bulk flow velocity, regardless
of Mach and Reynolds number, with maximum value of about 2%ub,
which is also consistent with the incompressible case (Pirozzoli et al.,
2018). For the range of Mach and Reynolds numbers herein considered
we find that the TL compressibility transformation for the mean
streamwise velocity developed for plane channel flow (Trettel and
Larsson, 2016) also well applies to square ducts, provided the nearest
wall is considered in defining the vertical coordinate. The DNS data in
fact suggest close similarity of the transformed velocity distributions with
those in incompressible pipe flow at matching values of an equivalent
friction Reynolds number, defined in Eq. (10).

Regarding the temperature field, we find that the various con-
tributions to its budget equation scale well when expressed in stretched
(y*,T z*T ) inner-units, irrespective of the Mach and Reynolds numbers.
Similar to the incompressible case, we find that mean convection is
mainly relevant at the duct corners, whereas it plays a minor role with

Fig. 12. Instantaneous streamwise velocity fluctuations in wall-parallel plane
( =+y 15T ), for flow cases D02 (a), D15A (b), D15B (c) and D3 (d). Contours are
shown in the range u3 / 3,D11 from dark to light shades.
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respect to the other terms in the bulk region. Viscous diffusion and
dissipation contribute most to the budget, and they are partially ba-
lanced by turbulent heat transport in the buffer layer. As a consequence,
mean temperature does not exhibit any logarithmic layer, nor uni-
versality with respect to Reynolds and Mach number variations. We
further show that a generalized form of Waltz’ equation can be used to
relate the mean velocity and passive scalar fields with the mean tem-
perature field.

Exploiting the formal similarity between the governing equation of
a passive scalar with spatially uniform heating and the streamwise
momentum equation, we show that the TL transformation can be gen-
eralized to achieve universal mean passive scalar profiles, which attain
the classical logarithmic form. Differences between passive scalars and
the temperature fields are then attributable to the strongly non-uniform
distribution of the aerodynamic heating term in the latter case. These
results point to a relatively simple representation of the mean flow
properties in compressible duct flow, which may be exploited in for the
development of improved predictive formulas for friction and heat
transfer across the range of Reynolds and Mach numbers, which will be
the subject of further study.

Flow statistics are available at the web page http://newton.dima.
uniroma1.it/database
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