109 research outputs found

    Nanoparticle- and microparticle-based luminescence imaging of chemical species and temperature in aquatic systems: a review

    Full text link
    © 2019, Springer-Verlag GmbH Austria, part of Springer Nature. Most aquatic systems rely on a multitude of biogeochemical processes that are coupled with each other in a complex and dynamic manner. To understand such processes, minimally invasive analytical tools are required that allow continuous, real-time measurements of individual reactions in these complex systems. Optical chemical sensors can be used in the form of fiber-optic sensors, planar sensors, or as micro- and nanoparticles (MPs and NPs). All have their specific merits, but only the latter allow for visualization and quantification of chemical gradients over 3D structures. This review (with 147 references) summarizes recent developments mainly in the field of optical NP sensors relevant for chemical imaging in aquatic science. The review encompasses methods for signal read-out and imaging, preparation of NPs and MPs, and an overview of relevant MP/NP-based sensors. Additionally, examples of MP/NP-based sensors in aquatic systems such as corals, plant tissue, biofilms, sediments and water-sediment interfaces, marine snow and in 3D bioprinting are given. We also address current challenges and future perspectives of NP-based sensing in aquatic systems in a concluding section. [Figure not available: see fulltext.]

    Luminescence Lifetime Imaging of O2 with a Frequency-Domain-Based Camera System

    Get PDF
    We describe a method to image dissolved oxygen (O2), in 2D at high spatial (< 50-100 µm) and temporal (< 10 s) resolution. The method employs O2 sensitive luminescent sensor foils (planar optodes) in combination with a specialized camera system for imaging luminescence lifetime in the frequency-domain. Planar optodes are prepared by dissolving the O2-sensitive indicator dye in a polymer and spreading the mixture on a solid support in a defined thickness via knife coating. After evaporation of the solvent, the planar optode is placed in close contact with the sample of interest - here demonstrated with the roots of the aquatic plant Littorella uniflora. The O2 concentration-dependent change in the luminescence lifetime of the indicator dye within the planar optode is imaged via the backside of the transparent carrier foil and aquarium wall using a special camera. This camera measures the luminescence lifetime (µs) via a shift in phase angle between a modulated excitation signal and emission signal. This method is superior to luminescence intensity imaging methods, as the signal is independent of the dye concentration or intensity of the excitation source, and solely relies on the luminescence decay time, which is an intrinsically referenced parameter. Consequently, an additional reference dye or other means of referencing are not needed. We demonstrate the use of the system for macroscopic O2 imaging of plant rhizospheres, but the camera system can also easily be coupled to a microscope

    Optimization of spray-drying conditions for lulo (Solanum quitoense L.) pulp

    Full text link
    The spray drying of lulo was optimized by using the central composite design of the response surface methodology, to study the effect of inlet air temperature (120-180 degrees C), arabic gum concentration (0-10% w/w), and maltodextrin DE16.5-19.5 concentration (0-10% w/w) on some product and process aspects. Arabic gum and maltodextrin, more than inlet air temperature, improved the product yield, reduced the hygroscopicity and the water content of the obtained powder, and contributed to the retention of its nutritive and functional properties through an increase in ascorbic acid, vitamin C, total phenol and total flavonoid content and antioxidant capacity. Significant (p < 0.05) response surface models were obtained in every case, with the linear terms of solute concentration being the factors that affected the response variables most significantly. The overall optimum spray drying conditions for obtaining lulo powder were 125 degrees C inlet air temperature, 3% (w/w) arabic gum, and 13.4% (w/w) maltodextrin DE16.5-19.5. (C) 2014 Elsevier B.V. All rights reserved.The authors thank the Universidad Politecnica de Valencia for the financial support given throughout the Project ADSIDEO-COOPERACION 2010 "Adaptacion de procesos de secado para favorecer la comercializacion de super frutas de origen colombiano".Igual Ramo, M.; Ramires, S.; Mosquera, LH.; Martínez Navarrete, N. (2014). Optimization of spray-drying conditions for lulo (Solanum quitoense L.) pulp. Powder Technology. 256:233-238. doi:10.1016/j.powtec.2014.02.003S23323825

    Slow Growth and Increased Spontaneous Mutation Frequency in Respiratory Deficient afo1- Yeast Suppressed by a Dominant Mutation in ATP3

    Get PDF
    A yeast deletion mutation in the nuclear-encoded gene, AFO1, which codes for a mitochondrial ribosomal protein, led to slow growth on glucose, the inability to grow on glycerol or ethanol, and loss of mitochondrial DNA and respiration. We noticed that afo1- yeast readily obtains secondary mutations that suppress aspects of this phenotype, including its growth defect. We characterized and identified a dominant missense suppressor mutation in the ATP3 gene. Comparing isogenic slowly growing rho-zero and rapidly growing suppressed afo1- strains under carefully controlled fermentation conditions showed that energy charge was not significantly different between strains and was not causal for the observed growth properties. Surprisingly, in a wild-type background, the dominant suppressor allele of ATP3 still allowed respiratory growth but increased the petite frequency. Similarly, a slow-growing respiratory deficient afo1- strain displayed an about twofold increase in spontaneous frequency of point mutations (comparable to the rho-zero strain) while the suppressed strain showed mutation frequency comparable to the repiratory-competent WT strain. We conclude, that phenotypes that result from afo1- are mostly explained by rapidly emerging mutations that compensate for the slow growth that typically follows respiratory deficiency

    Flow Injection Analysis with Microdialysis Probes Enable Minimally Invasive and Dynamic H2O2 Measurements

    No full text
    This paper describes the optimization of a published flow injection analysis system coupled with microdialysis probes (MDP-FIA) for in-situ sampling and online measurements of hydrogen peroxide (H2O2). By modifying the commonly used Na2CO3 buffer by addition of EDTA and a changed order in reagent injection, interfering transition metals such as Fe(II) and Fe(III) are complexed and removed from the system without interfering with the chemiluminescent reaction of the used acridinium ester and H2O2. The system was then used to monitor changes in H2O2 concentration upon microwaving seawater and filtered seawater in the presence and absence of agar
    corecore