12 research outputs found

    The Sphingosine Kinase-Sphingosine-1-Phosphate Axis Is a Determinant of Mast Cell Function and Anaphylaxis

    Get PDF
    SummarySphingosine-1-phosphate, a key mediator in immune cell trafficking, is elevated in the lungs of asthmatic patients and regulates pulmonary epithelium permeability. Stimulation of mast cells by allergens induces two mammalian sphingosine kinases (Sphk1 and Sphk2) to produce sphingosine-1-phosphate (S1P). Little is known about the individual role of these kinases in regulating immune cell function. Here we show that in mast cells, Sphk2 is required for production of S1P, for calcium influx, for activation of protein kinase C, and for cytokine production and degranulation. However, susceptibility to in vivo anaphylaxis is determined both by S1P within the mast cell compartment and by circulating S1P generated by Sphk1 predominantly from a non-mast cell source(s). Thus, sphingosine kinases are determinants of mast cell responsiveness, demonstrating a previously unrecognized relationship with anaphylaxis

    Enhanced generation of reactive oxygen species by interferon-γ may have contributed to successful treatment of invasive pulmonary aspergillosis in a patient with chronic granulomatous disease.

    Get PDF
    Invasive pulmonary aspergillosis (IPA) is a life-threatening complication of chronic granulomatous disease (CGD), a rare inherited disorder of phagocytes that is characterized by a defect in the production of reactive oxygen species (ROS) caused by mutations in NADPH oxidase 2. Here, we report a case of successful treatment of IPA complicated with CGD by the administration of interferon-γ (IFN-γ) in combination with voriconazole. The patient carried a splice site mutation in the CYBB gene, and the neutrophils could produce a certain amount of ROS. In this case, augmentation of ROS generation in the patient's neutrophils was observed after in vivo IFN-γ treatment, which may be attributable to the induction of a normal CYBB gene in the myeloid progenitor cells. This treatment, in combination with voriconazole, may have contributed to the reversal of IPA in this patient. These results suggest that the in vivo use of IFN-γ may augment ROS generation in CGD neutrophils, thus leading to the successful treatment of severe IPA

    Sphingosine kinase 1/S1P receptor signaling axis controls glial proliferation in mice with Sandhoff disease

    No full text
    Sphingosine-1-phosphate (S1P) is a lipid-signaling molecule produced by sphingosine kinase in response to a wide number of stimuli. By acting through a family of widely expressed G protein-coupled receptors, S1P regulates diverse physiological processes. Here we examined the role of S1P signaling in neurodegeneration using a mouse model of Sandhoff disease, a prototypical neuronopathic lysosomal storage disorder. When sphingosine kinase 1 (Sphk1) was deleted in Sandhoff disease mice, a milder disease course occurred, with decreased proliferation of glial cells and less-pronounced astrogliosis. A similar result of milder disease course and reduced astroglial proliferation was obtained by deletion of the gene for the S1P3 receptor, a G protein-coupled receptor enriched in astrocytes. Our studies demonstrate a functional role of S1P synthesis and receptor expression in astrocyte proliferation leading to astrogliosis during the terminal stages of neurodegeneration in Sandhoff disease mice. Because astrocyte responses are involved in many types of neurodegeneration, the Sphk1/S1P receptor signaling axis may be generally important during the pathogenesis of neurodegenerative diseases

    Essential Role for Sphingosine Kinases in Neural and Vascular Development

    No full text
    Sphingosine-1-phosphate (S1P), an important sphingolipid metabolite, regulates diverse cellular processes, including cell survival, growth, and differentiation. Here we show that S1P signaling is critical for neural and vascular development. Sphingosine kinase-null mice exhibited a deficiency of S1P which severely disturbed neurogenesis, including neural tube closure, and angiogenesis and caused embryonic lethality. A dramatic increase in apoptosis and a decrease in mitosis were seen in the developing nervous system. S1P(1) receptor-null mice also showed severe defects in neurogenesis, indicating that the mechanism by which S1P promotes neurogenesis is, in part, signaling from the S1P(1) receptor. Thus, S1P joins a growing list of signaling molecules, such as vascular endothelial growth factor, which regulate the functionally intertwined pathways of angiogenesis and neurogenesis. Our findings also suggest that exploitation of this potent neuronal survival pathway could lead to the development of novel therapeutic approaches for neurological diseases

    S1P3-mediated cardiac fibrosis in sphingosine kinase 1 transgenic mice involves reactive oxygen species

    Get PDF
    金沢大学医薬保健研究域医学系Aims Sphingosine kinase 1 (SPHK1), its product sphingosine-1-phosphate (S1P), and S1P receptor subtypes have been suggested to play protective roles for cardiomyocytes in animal models of ischaemic preconditioning and cardiac ischaemia/reperfusion injury. To get more insight into roles for SPHK1 in vivo, we have generated SPHK1-transgenic (TG) mice and analysed the cardiac phenotype.Methods and results SPHK1-TG mice overexpressed SPHK1 in diverse tissues, with a nearly 20-fold increase in enzymatic activity. The TG mice grew normally with normal blood chemistry, cell counts, heart rate, and blood pressure. Unexpectedly, TG mice with high but not low expression levels of SPHK1 developed progressive myocardial degeneration and fibrosis, with upregulation of embryonic genes, elevated RhoA and Rac1 activity, stimulation of Smad3 phosphorylation, and increased levels of oxidative stress markers. Treatment of juvenile TG mice with pitavastatin, an established inhibitor of the Rho family G proteins, or deletion of S1P3, a major myocardial S1P receptor subtype that couples to Rho GTPases and transactivates Smad signalling, both inhibited cardiac fibrosis with concomitant inhibition of SPHK1-dependent Smad-3 phosphorylation. In addition, the anti-oxidant N-2-mercaptopropyonylglycine, which reduces reactive oxygen species (ROS), also inhibited cardiac fibrosis. In in vivo ischaemia/reperfusion injury, the size of myocardial infarct was 30 decreased in SPHK1-TG mice compared with wild-type mice.Conclusion These results suggest that chronic activation of SPHK1-S1P signalling results in both pathological cardiac remodelling through ROS mediated by S1P3 and favourable cardioprotective effects
    corecore